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A B S T R A C T

In this dissertation we undertake a fundamental study of network equilibria mod-
eled as solutions of fixed point equations for monotone linear functions with sat-
uration nonlinearities. The considered model extends one originally proposed to
study systemic risk in networks of financial institutions interconnected by mu-
tual obligations and it is one of the simplest continuous models accounting for
shock propagation phenomena and cascading failure effects. This model also char-
acterizes Nash equilibria of constrained quadratic network games with strategic
complementarities. We first derive explicit expressions for network equilibria and
prove necessary and sufficient conditions for their uniqueness, encompassing and
generalizing results available in the literature. Then, we study jump discontinu-
ities of the network equilibria when the exogenous flows cross certain regions
of measure 0 representable as graphs of continuous functions. We discuss some
implications of our results in the two main motivating applications. In financial
networks, this bifurcation phenomenon is responsible for how small shocks in
the assets of a few nodes can trigger major aggregate losses to the system and
cause the default of several agents. In constrained quadratic network games, it
induces a blow-up behavior of the sensitivity of Nash equilibria with respect to
the individual benefits.

Finally, we study in details a relevant application by considering a determin-
istic continuous-time lossy dynamical flow networks with constant exogenous
demands, fixed routing, and finite flow and buffer capacities. In the considered
model, when the total net flow in a cell, consisting of the difference between the
total flow directed towards it minus the outflow from it, exceeds a certain capacity
constraint, then the exceeding part of it leaks out of the system. The ensuing net-
work flow dynamics is a linear saturated system with compact state space that we
analyze using tools from monotone systems and contraction theory. Specifically,
we prove that there exists a set of equilibria that is globally asymptotically stable.
Such equilibrium set reduces to a single globally asymptotically stable equilibrium
for generic exogenous demand vectors. Moreover, we show that the critical exoge-
nous demand vectors giving rise to non-unique equilibria correspond to phase
transitions in the asymptotic behavior of the dynamical flow network.

v
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1
I N T R O D U C T I O N

1.1 introduction and motivation

A central aspect of complex socio-technical systems such as infrastructural, social,
economic, and financial networks is the role played by interconnections in amplify-
ing and propagating shocks through cascading mechanisms that may increase the
fragility of a system [5, 18, 21]. The term systemic risk refers to the possibility that
even small shocks localized in a limited part of the network can spill over, thus
possibly achieving a significant global impact [29, 54, 2]. A key challenge is to find
adequate models for network systems, that are sufficiently elaborate to incorpo-
rate such propagation phenomena, yet simple enough to allow for mathematical
tractability. Whilst simple contagion models such as epidemic contact processes
prove inadequate as they are based on purely pairwise interactions, more com-
plex models taking into account cumulative neighborhood effects include the lin-
ear threshold model [4, 59, 51] whose applicability is however limited by the fact
that states of the nodes are described by pure binary variables simply expressing
whether the node has been affected by the shock.

In most of the applications where the network represents a physical infrastruc-
ture, a social or economic network, or an interconnected financial system, however,
the cascading mechanism is rather triggered by a process naturally described in
terms of continuous variables such as, e.g., power flows in electric grids, traffic vol-
umes in transportation systems, the extent of individuals’ involvement in a certain
activity in social networks, prices or quantities of goods in an economic system,
assets values and payments in financial networks. The most tractable continuous
models of network interaction considered in the literature give rise to notions
of equilibria that can be mathematically characterized as the solutions of a lin-
ear system of equations whose coefficients can be assembled in a (often sparse)
matrix that describes the network of interconnections among the different nodes.
Examples include competitive equilibria in production networks [1, 3] or Nash
equilibria in network games with linear best replies including quadratic network
games [9, 19, 27, 16, 32].

While the most basic formulations of such fundamental models consider no con-
straints on the involved variables, in several of the aforementioned applications it
is natural to assume some a priori lower (e.g., non-negativity) and upper bounds
(e.g., maximum available resource). E.g., in the financial context [25], where institu-
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1.2 organization of the dissertation 2

tions are interconnected by mutual obligations and the payments are necessarily
non-negative and upper bounded by the debt value. In the context of network
games modeling peer effects on students’ engagement, [19] suggests to “bound
the strategy space in such a game rather naturally by simply acknowledging the
fact that students have a time constraint and allocate their time between leisure
and school work,” and [17] acknowledge that “while in principle, a player’s action
could be any real number, all games in the literature place restrictions on players’
actions which represent different real-world situations” and that “for peer effects
in a classroom, there are natural lower and upper bounds: a student can study no
less than zero hours and no more than twenty-four hours in a day.” When a priori
upper and lower bounds are taken into account in the network model, the related
equilibrium notions end up being mathematically characterized as the solutions of
linear systems of equations with saturation non-linearities. [19, 12, 16, 6, 17]. Such
saturated network models exhibit a considerably richer behaviors than purely lin-
ear ones, including the possibility of cascading effects coded in terms of variable
saturations and transition phases with respect to structure parameters. As we
shall see in the following chapters, such cascade effects can have deep implica-
tions in terms of systemic risk, which is particularly crucial in financial networks.
In this context, interconnections existing among financial entities originate addi-
tional channels for contagion and amplification of shocks to the financial system.
In fact, among the several factors that amplified the global financial crisis of 2007-
08, the role of the expanding interconnectedness of the financial network is per-
haps the least understood. The unfolding of the crisis made clear the fact that both
regulators and market participants had very bounded information about the net-
work of obligations and liabilities connecting financial institutions. It also revealed
that very little was known about the relationship between interconnectedness, fi-
nancial stability and systemic risk. Since then, these kind of issues have attracted
a considerably amount of attention and a growing body of literature began study-
ing how connections can actually amplify or dampen shocks and the role of the
network topology in such phenomena.

Motivated by all these applications, the aim of this thesis is to perform a system-
atic study of saturated network models. We will answer fundamental questions
about uniqueness and continuity of the equilibria with results that also give new
insights about the relation between shocks and network topology and how this
interplay can originate cascading effects.

1.2 organization of the dissertation

The thesis is organized as follows.



1.2 organization of the dissertation 3

• In Chapter 2 we introduce the necessary mathematical tools and notation
that will be used throughout the dissertation. In particular, in Section 2.2
we recall some basic notions of graph theory and non-negative matrices.
In Section 2.3 we discuss some useful properties of monotone dynamical
system, especially when the state space form a complete lattice. Then, in
Section 2.4 we present the basics of game theory with a particular focus on
supermodular games. Several examples are proposed to better explain some
concepts.

• In Chapter 3 we present a fundamental analysis of a saturated equilibrium
model, which is introduced in in Section 3.1. Here we discuss the relevant
literature and previous work; we end this Section discussing the main con-
tributions that we develop in the Chapter. In Section 3.2 we present the main
applications of the model and in Section 3.3 we discuss important structural
properties of the equilibria that are instrumental to prove the fundamental
results presented in Section 3.4 and Section 3.5. Specifically in Section 3.4
we provide a necessary and sufficient condition for uniqueness of equilibria
for a generic network and in Section 3.5 we study the continuity of the equi-
libria and the existence of critical shocks that trigger a jump discontinuity
that has deep implications also for the concept of systemic risk. Finally, in
Section 3.6 we draw some conclusions about this Chapter. The content of
this Chapter is based on the accepted-for-publication paper [44] co-authored
with my advisors Fabio Fagnani and Giacomo Como.

• In Chapter 4 we study in detail a relevant application of the saturation model
in the form of a continuous-time flow dynamics on networks with finite ca-
pacities. In Section 4.1 we discuss the relevant literature and the main con-
tributions presented in this Chapter. In Section 4.2 we introduce the model
and in Section 4.3 we give important results about the geometry and stabil-
ity of the equilibria. In Section 4.4 we study the continuity of the equilibria
and the phase transition that occurs in the system for critical values of the
exogenous shock. We end the Chapter with Section 4.5 where we draw some
conclusions and discuss future research. The content of this Chapter is based
on the published paper [43] co-authored with my advisors Fabio Fagnani
and Giacomo Como.

• We wrap up the thesis with Chapter 5 where we summarize the main con-
tributions of this work as a whole in Section 5.1 and discuss possible exten-
sions and open problems that are object of current and future research in
Section 5.2.



2
M AT H E M AT I C A L C O N C E P T S A N D T O O L S

In this Chapter we are going to introduce the notation, theoretical concepts and
tools that will be used throughout this dissertation. More in details, we present
notions of graph theory, dynamical systems and game theory that will be used to
build and study saturated network models in the following chapters.

2.1 basic notation

To begin with, we explain the basic notation to be used throughout this work. Vec-
tors are denoted with lower case, matrices and random variables with upper case,
and sets (and set-valued functions) with calligraphic letters. A subscript associ-
ated to vectors, for instance vA, represents the sub-vector that is the restriction of
a vector v in Rn on the set of indices A ⊆ {1, 2, . . . ,n}. The same notation is used
for matrices: PAB represents the sub-matrix of P obtained by considering rows
and columns associated with the indices contained in sets A and B, respectively.
We view all vectors as column vectors and we use x> to denote the transpose of a
vector x; the same holds for matrices.

We indicate with 1 the all-1 vector, regardless of its dimension, and with I the
identity matrix. Throughout the dissertation, the natural entry-wise partial order
is considered on Rn, so that, the inequality x ≤ y for two vectors x and y in Rn

is to be understood as xi ≤ yi for every i = 1, 2, . . . ,n, whereas x � y means that
x ≤ y with strict inequality in at least one entry. Analogously, the absolute value
of a vector v in Cn is the vector |v| in Rn

+ with entries (|v|)i = |vi| for i = 1, . . . ,n.
A norm ‖ · ‖ on Cn is referred to as monotone if ‖v‖ ≤ ‖w‖ whenever |v| ≤ |w|.
Additional notations will be introduced throughout this work and explained when
needed.

2.2 elements of graph theory

In this section we present some basic notions of graph theory and we introduce
the notation and the terminology used in the rest of this dissertation. Finally, we
conclude presenting some relevant examples of graph topologies that we will use
later on.

4



2.2 elements of graph theory 5

2.2.1 Weighted directed graphs

A finite (directed weighted) graph G = (V,E,W ) is a mathematical entity identified
by a triple:

• a set of n ∈N nodes, usually labeled by positive integer numbers, gathered
in the node set V = {1, . . . ,N};

• a set of ordered pairs of nodes (i, j) with i, j ∈ V, named links, which are
collected in the link set E ⊆ V×V;

• a weight matrix W ∈ RV×V
+ that has the property that Wij > 0 if and only

if (i, j) ∈ E, i.e., if (i, j) is a link. This also means that we can associate a
weighted directed graph GW = (V,E) to any square matrix W in Rn×n with
node set V = {1, 2, . . . ,n}, link set E = {(i, j) ∈ V×V : Wij 6= 0} and weights
given by W .

The presence of the edge (i, j) has to be interpreted as a connection between
node i and node j and the associated weight Wij quantifies the "strength" of the
connection. Depending on the specific context, the link’s weight may measure for
instance the strength of a connection in terms of influence between two nodes, or,
in the financial network applications, the nominal value of the debt that agent i
has towards agent j. We shall refer to links (i, i) whose head node coincides with
its tail node as self-loops.

In certain applications, links have an intrinsic bilateral meaning (e.g, symmetric
interaction, friendship, partnership). This corresponds to a situation where two
links (i, j) and (j, i) are either both present with the same weight Wij = Wji > 0,
or both absent (so that Wij = Wji = 0). Graphs with this feature will be called
undirected.

db
ca

(a) Directed graph.

db
ca

(b) Undirected graph.

Figure 1: Directed and undirected graphs.

When referring generically to a graph, we will implicitly intend it to be weighted
and directed, unless it is otherwise specified or clear from the context.

Given a graph G = (V,E,W ), we introduce the following notions.
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• The out-neighborhood and the in-neighborhood of a node i ∈ V are, respec-
tively, the sets

Ni = {j ∈ V | (i, j) ∈ E}, N−i = {j ∈ V | (j, i) ∈ E}

Nodes in Ni and N−i are referred to, respectively, as out-neighbors and in-
neighbors of node i in G.

• Nodes with no out-neighbors other than possibly themselves are called sinks,
while nodes with no in-neighbors other than possibly themselves are called
sources. E.g., the graph in Figure 2 contains a source (node 2) and a sink
(node 4).

• The out-degree and in-degree of a node i are defined, respectively, as

wi =
∑
j∈V

Wij , and w−i =
∑
j∈V

Wji.

Often we will use the shorter term degree for out-degree and the compact
notation

w = W1, w− = W>1.

• G is called balanced if w = w−.

• G is called regular if all its nodes have the same degree, i.e., if w = w− = 1
n .

Notice that in undirected graphs there is no distinction between out- and in-
neighbors, out- and in-neighborhoods, and out- and in-degree.

1

2

3

4

Figure 2: A directed graph with 4 nodes. Node 2 is a source and node 4 is a sink.

We end this subsection by introducing the notion of sub-graph. A sub-graph of
G = (V,E,W ) is any graph H = (U,F,Z) with node set U ⊆ V link set F ⊆ E, and
link weights Zij ≤ Wij for every i, j ∈ U.
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2.2.2 Reachability and connected components

Let G = (V,E,W ) be a graph. We introduce the following important definitions:

• A walk from node i to node j is a finite sequence of nodes γ = (γ0, γ1, . . . , γl)
such that γ0 = i, γl = j, and (γh−1, γh) ∈ E for all h = 1, . . . , l, i.e., there is a
link between every two consecutive nodes. Here, l is called the length of the
walk. By convention, we consider walks of length 0 as going from a node to
itself.

• A walk γ = (γ0, γ1, . . . , γl) such that γh 6= γk for all 0 ≤ h < k ≤ l, except for
possibly γ0 = γl, is called a path. In plain words, a path is a walk that does
not pass through a previously visited node except possibly for ending in its
start node;

• A node j is said to be reachable from a node i if there exists a walk from i to
j;

• A graph G is called strongly connected if given any two nodes i and j, we have
that i is reachable from j.

• Given a subset of nodes U ⊆ V, we say that U is trapping (in G) if for every
i ∈ U and every walk in G from i to some j, we have that j ∈ U.

The analysis of the connectedness of a graph can be further refined by consider-
ing the so called connected components or classes of G that are the maximal subsets
V1,V2, . . . ,Vk of the node set V such that, for every two nodes i and j in the same
component Vh, there exists a path from i to j. In other words, that means that the
sub-graph associated to such a component is strongly connected. Note that the
size of a connected component may range from 1 (in case there exists a node i

such that there exists no other node j 6= i such that both j is reachable from i and
vice versa) to n (when the graph is strongly connected). The splitting in connected
components constitutes a partition of the node set V, i.e., one has that

V = V1 ∪V2 ∪ . . .∪Vk, Vh ∩Vl = ∅, h 6= l
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1

2

3

4

5

6

9

7

10

8

V1

V2

V3

V4

Figure 3: A graph with 10 nodes and 4 connected components. Notice that V2 and V4 are
trapping sets. The sets V1 and V3 are also called transient.

In Figure 3 we show a graph consisting of 10 nodes, 4 connected components
and 2 trapping sets, namely V2, which is also a sink, and V4. Intuitively, if we one
starts moving at random from node to node according to the links present in the
graph, it will eventually be "trapped" in either V2 or V4 and unable to get back to
any of the other components.

2.2.3 Elements of algebraic graph theory and non-negative matrices

One of the key achievements of modern graph theory is the recognition that many
graph properties admit an equivalent linear algebraic version. In this section, we
introduce some of these notions that will be useful later on.

The most natural matrix associated to a weighted graph is of course the weighted
matrix W . Typically, we will be working with a normalized version of such a ma-
trix, called normalized weighted matrix and we will denote it with P .
P is defined element-wise by:

Pij =

{
Wij/wi if wi > 0

0 otherwise
(1)

Notice that all entries of P are non-negative: matrices with this property are sim-
ply referred to as non-negative. Moreover, by the definition of P it follows that

P1 ≤ 1, (2)

Non-negative square matrices satisfying property (2) are referred to as sub-stochastic
matrices. In plain words, a non-negative matrix is sub-stochastic if the sum of the
entries in each row never exceeds 1.

Notice that in the literature it is often assumed that sub-stochastic matrices have
the additional property that for at least one row there is strict inequality. Here we
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prefer not to follow this convention and in this way our class of sub-stochastic
matrices contains also matrices P for which wi > 0 for all i ∈ V and, hence,
satisfying:

P1 = 1, (3)

Non-negative square matrices satisfying property (3) are also referred to as stochas-
tic matrices.

In the following, we will denote the spectral radius of a matrix P , i.e., the largest
absolute value of its eigenvalues, with the notation ρ(P ).

The structure of the normalized weight matrix P is also linked to the connected-
ness properties of the associated directed graph GP . In fact, a non-negative square
matrix P is said to be irreducible if for every i and j, there exists l ≥ 1 such that(
P l
)
ij
> 0. Equivalently, P is irreducible if and only if the associated graph GP is

strongly connected.

Finally, we present the following proposition gathering known important re-
sults about non-negative matrices that can be found, e.g., in the monograph [13].

Proposition 2.2.1 Let P in Rn×n
+ be a non-negative square matrix. Then:

(i) the spectral radius ρ(P ) is an eigenvalue of P and there exist vectors p and π in
Rn

+ \ {0} such that

Pp = ρ(P )p , π>P = ρ(P )π> .

Such vectors are called, respectively, a right and a left dominant eigenvector of P ;

(ii) if Q is a principal square sub-matrix of P , then ρ(Q) ≤ ρ(P ).

Moreover, if P is irreducible, then

(iii) the dominant eigenvectors p and π are unique up to normalization and have all
positive entries. π is also referred as to the eigenvector centrality of the graph and
also as to the invariant probability vector of the graph (when it is normalized such
that 1>π = 1);

(iv) for every vector c in Rn such that p>c = 0, the equation x = ρ(P )P>x+ c admits
infinite solutions x in Rn;

(v) if Q is a principal proper square sub-matrix of P , then ρ(Q) < ρ(P ).



2.2 elements of graph theory 10

Example:
Let us consider the following weighted directed graph:

1

2 3

4

5

5

1

3

2

8

5

2

4

Figure 4: A weighted directed graph with 5 nodes and 8 links connecting them.

We can easily compute the weighted adjacency and normalized weighted
matrices using their definitions:

W =


0 0 0 2 0

5 0 0 0 0

0 1 0 0 4

0 0 5 0 2

8 3 0 0 0

 =⇒ P =


0 0 0 1 0

1 0 0 0 0

0 1
5 0 0 4

5

0 0 5
7 0 2

7
8
11

3
11 0 0 0


Notice that the graph is strongly connected and hence P ∈ R5×5

+ is an
irreducible matrix. According to Proposition 2.2.1(iii), we can compute the

unique invariant probability vector π associated to the graph:
π ≈ [0.25, 0.09, 0.18, 0.25, 0.22]>. According to π, the most "central" nodes in the

graph are 1 and 4.

2.2.4 Spectral properties and non-expansive networks

In this subsection, we introduce the notion of non-expansive network that will
play a key role in the Chapter 3.

For a non-negative square matrix P in Rn×n
+ , we shall consider the connected

components V1, . . . ,Vs of the associated digraph GP and refer to them as the classes
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of P . Upon a possible permutation of the indices i = 1, . . . ,n, we can always
assume that the matrix P admits the following block triangular structure

P =


P (11) P (12) · · · P (1s)

0 P (22) · · · P (2s)

0 0
. . . ...

0 0 · · · P (ss)

 , (4)

where, for i, j = 1, . . . , l, P (i,j) in R
Vi×Vj
+ is the sub-matrix of P obtained by keep-

ing only rows with index in Vi and columns with index in Vj . Notice that this is
equivalent to saying that the diagonal blocks P (ii) are irreducible and that in GP
there is no link from a node in a class Vl to any node in a class Vi with i < l. It then
follows from Proposition 2.2.1 (ii) that ρ(P (ii)) ≤ ρ(P ). A class Vi, for 1 ≤ i ≤ s,
will then be referred to (c.f. [13]) as:

• basic if ρ(P (ii)) = ρ(P );

• final if P (ih) = 0 for every h 6= i.

We can state the following result, whose proof is presented in Appendix A.

Proposition 2.2.2 Let P in Rn×n
+ be a non-negative square matrix. Then, there exists a

positive vector v in Rn
+ such that

Pv ≤ v , (5)

if and only if ρ(P ) < 1 or ρ(P ) = 1 and every basic class of P is final.

Observe that to every positive vector v in Rn
+ we may associate the weighted

l1-norm

‖x‖ =
n∑
i=1

vi|xi| , x ∈ Cn . (6)

Clearly, the above is an absolute norm, hence a monotone norm [33]. Condition
(5) implies that

‖P>x‖ = v>P>|x| ≤ v>|x| = ‖x‖ , ∀x ∈ Cn . (7)

We introduce the following definition.

Definition (Non expansive networks)
A network (P ,w) is non-expansive if either

(i) ρ(P ) < 1; or
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(ii) ρ(P ) = 1 and every basic class of P is final.

Remark A special class of non-expansive networks is provided by those networks
(P ,w) such that the matrix P is (row) sub-stochastic. Indeed, for a sub-stochastic
matrix P , it can be easily checked that ρ(P ) ≤ 1 and that if ρ(P ) = 1 then every
basic class is necessarily final. We recall that in the literature it is often assumed
that sub-stochastic matrices have the additional property that for at least one row
there is strict inequality. Here we prefer not to follow this convention and in this
way our class of sub-stochastic matrices contains also the stochastic matrices that
are those for which P1 = 1.

2.3 elements of monotone dynamical systems

In this Section we present some notion of monotone dynamical system that will
be exploited in the thesis. An in-depth study of this topic can be found in [30].

2.3.1 Dynamical systems

In very general terms, a dynamical system, also called a flow, is a tuple (T,X,φ)
where T is a monoid, X is a non-empty set called the state space and φ(t,x) is a
continuous function φ : T ×X 7→ X such that

• φ(0,x) = x;

• φ (t2,φ (t1,x)) = φ (t2 + t1,x) for t1, t2 ∈ T.

Usually φ(t,x) is called the evolution function and t the evolution parameter.
In our case, the set T will be either the non-negative reals (continuous dynamical
system) or the set of natural numbers (discrete dynamical system). In both cases,
we shall also refer to the dynamical system as to a semi-flow.

We will also use the notation

φx(t) ≡ φ(t,x)

φt(x) ≡ φ(t,x)

whenever we take one of the variables as constant.

φx : T 7→ X

is called the flow through x.
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Definition (Monotone dynamical system)
Consider a dynamical system (T,X,φ) where X is a metric space equipped with

a partial order ≤. We say that the system is a monotone dynamical system when it
preserves such a partial order, i.e.,

x ≤ y =⇒ φt(x) ≤ φt(y), t ∈ T, x, y ∈ X (8)

Monotonicity is a strong property of dynamical systems and it has been exten-
sively studied due to the fact that the evolution of monotone systems is severely
limited and much can be said about their asymptotic behavior.

2.3.2 Monotone systems on lattices

In this dissertation we will often consider monotone systems where the state space
forms a complete lattice.

Definition (Lattice)
The partially ordered set X is a lattice (X,≤) if for each two point set {x, y} ⊂ X,

there is a supremum (least upper bound) for {x, y} (denoted x ∨ y and called
the join of x and y ) and an infimum (greatest lower bound) for {x, y} (denoted
x ∧ y and called the meet of x and y ) in X. The lattice is complete if for all
nonempty subsets T ⊂ X, inf(T) ∈ X and sup(T) ∈ X. We denote the minimum
and maximum element of a complete lattice (X,≤) with x and x respectively.

Example:
• The real line (with the usual order) is a lattice as well as any compact

subset of it.

• X =
∏
iAi where Ai ⊆ R are compacts, with the component-wise order

x ≤ y if and only if xi ≤ yi for all i. Moreover (a ∨ b)i = max {ai, bi} , (a ∧
b)i = min {ai, bi} . This is also a complete lattice.

We first present an important fixed-point result that holds for monotone maps
defined on complete lattices whose proof can be found in [55].

Proposition 2.3.1 (Tarski’s fixed point theorem)
Let (X,≤) be a complete lattice and f : X 7→ X an order-preserving function with

respect to the partial order ≤. Then, the set of all fixed points of f is a complete lattice with
respect to ≤. In particular, such set admits a minimum and a maximum element.
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Tarski’s fixed point theorem can be used to prove the following results about the
asymptotic behavior of monotone discrete systems on lattices.

Proposition 2.3.2 Consider the monotone discrete-time dynamical system defined by
(N,X,φ) where (X,≤) is a complete lattice. Then. the set of equilibria of the system
also forms a complete lattice. In particular, such set admits a minimum element x∗ and a
maximum element x∗ and we have φ(t,x)→ x∗ and φ(t,x)→ x∗ for t→ +∞.

Proof By Tarski’s fixed point theorem 2.3.1 and by the monotonicity of the system,
we have that φt(x) : X 7→ X admits a complete lattice of fixed points. Moreover,
since the system is monotone, for a fixed t, we have:

x ≤ φt(x) ≤ φt(φt(x)) = φ2t(x) ≤ φ3t(x) ≤ . . .

This sequence is bounded below by x and hence it admits a limit: φt(x) → x∗. A
completely analogous argument can be used to show that φt(x)→ x∗.

2.4 elements of game theory and supermodular games

In this Section we introduce some elements of Game Theory, with particular focus
on supermodular games. A wonderful introduction to the topic can be found in
[36].

2.4.1 Some basic notions

We consider games in strategic form. There is a finite set of n players V and a set of
actions Ai for each i ∈ V. The assignment of an action to each player is described
by a vector x ∈ A1 × · · · × An that is called an action profile or configuration.
Throughout, we shall denote by

X = A1 × · · · ×An

the configuration space.
Each player i ∈ V is equipped with a utility function (a.k.a. reward or payoff

function)
ui : X→ R

that associates with every action profile x in X the utility ui(x) that player i gets
when each player j is playing action xj ∈ A. We will often use the notation

x−i = x|V\{i}
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for the vector obtained from the action profile x by removing its i -th entry, and,
with a slight abuse of notation, write

ui (xi,x−i) = ui(x) (9)

for the utility received by player i when she chooses to play action xi, and the
rest of the players choose to play x−i. The triple Γ =

(
V, {A}i∈V , {ui}i∈V

)
will be

referred to as a (strategic form) game.

Every player i is to be interpreted as a rational agent choosing her action xi from
the action set A so as to maximize her own utility ui (xi,x−i) . In consideration of
the fact that this utility depends not only on player i ’s action xi but also on the
actions of the rest of the players’ actions x−i, it is natural to introduce the (set-
valued) best response (BR) function

Bi (x−i) = argmax
xi∈Ai

ui (xi,x−i)

Assuming that player i knows what the rest of the players’ actions are and that
these are not changing, choosing an action in Bi (x−i) is for her the rational choice
as it makes her utility as large as possible. Of course, when Ai is not finite, Bi (x−i)
could as well be an empty set.

Definition (Pure strategy Nash equilibrium)
A (pure strategy) Nash equilibrium (NE) for the game

(
V, {A}i∈V , {ui}i∈V

)
is an

action configuration x∗ ∈ X such that

x∗i ∈ Bi (x
∗
−i) , i ∈ V

The Nash equilibrium is called strict if, moreover,
∣∣Bi

(
x∗−i
)∣∣ = 1 for every i.

The interpretation of a Nash equilibrium is the following: it is an action profile
such that no player has any incentive to unilaterally deviate from her action, as the
utility she is getting with that action is the best possible given the actions chosen
by the other players. Note the emphasis on ’unilaterally’: it is not at all guaranteed
that coordinated deviations of more than one player from their actions in a Nash
equilibrium could not lead to a higher utility for these players. As we shall see,
there are games with multiple Nash equilibria and games which instead have
none. We denote by N the set of Nash equilibria of a game.
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Example:
(Cournot Competition)

This is a two-player game where the players are two firms producing a ho-
mogeneous good for the same market. The action of a firm i is a quantity,
xi ∈ A = [0,+∞) representing the amount of good it produces. The utility
for each firm is its total revenue minus its total cost,

ui (x1,x2) = xip (x1 + x2)− cxi, i = 1, 2,

where p(q) is the price of the good (as a function of the total quantity), and c is
unit cost (same for both firms).

Assume for simplicity that p(q) = max{0, 2− q}. Then, the best response is
given by

Bi (x−i) =

{
1− c/2− x−i/2 if x−i ≤ 2− c
0 if x−i > 2− c

If c < 2 (the case when c ≥ 2 is of no interest as 0 will be in this case a domi-
nant strategy for both players), a simple computation shows that the only Nash
equilibrium is given by the configuration

x1 = x2 =
2− c
3

2.4.2 Best response dynamics

In this section, we introduce an important game-theoretic learning process, the best
response dynamics. We start with the definition of the asynchronous best response
dynamics, where players in a strategic form game get randomly activated one at
a time and switch to a best response action.

Consider a strategic-form game
(
V, {A}i∈V , {ui}i∈V

)
. The continuous-time asyn-

chronous best response dynamics is a Markov chain X(t) with state space X,
where every player i ∈ V is equipped with an independent rate-1 Poisson clock.
When her clock ticks at time t, player i updates her action to some yi chosen from
the action set Ai with conditional probability distribution that is uniform over the
best response set (assuming that such a set is finite)

Bi (X−i(t)) = argmax
xi∈Ai

{ui (xi,X−i(t))} (10)

In particular, when the best response is unique, player i updates her action to such
best response action. Hence, the continuous-time asynchronous best response dy-
namics is a continuous-time Markov chain X(t) with state space coinciding with
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the configuration space X of the game and transition rate matrix Λ as follows:
Λxy = 0 for every two configurations x, y ∈ X that differ in more than one entry,
and

Λxy =

{
|Bi (x−i)|−1 if yi ∈ Bi (x−i)

0 if yi /∈ Bi (x−i)
(11)

for every two configurations x, y ∈ X differing in entry i only, i.e., such that xi 6= yi
and x−i = y−i.

If the best response is unique, one could also consider the discrete-time syn-
chronous best response dynamics, where all players update time to their unique best
response at the same time. In such a case, the update rule (10) can be written as a
discrete-time dynamics for each time t ∈N as:

xi(t+ 1) = Bi (x−i(t)) (12)

Notice that, in contrast with the asynchronous best response, this is a deterministic
dynamics.

A natural question that rises is under what assumptions the dynamics (10) (and
(12)), starting from a certain initial state x0 ∈ X, converges to the set of Nash equi-
libria of Γ. It is well known that for certain classes of games, like the supermodular
games that we will introduce in the next Section, this convergence is guaranteed.

2.4.3 Supermodular games

We introduce a particular family of games called supermodular games or games with
strategic complementarities. These games enjoy very useful properties in terms of
existence and structure of their Nash equilibria. A detailed study of supermodular
games can be found in [45].

We start with some preliminaries:

Definition (Increasing Differences)
Given two lattices A1 and A2, a function f : A1 ×A2 → R has increasing differ-

ences in its two arguments x and y if for all x ≥ x′, the difference f(x, y)− f (x′, y)
is non-decreasing in y.

In the game model that follows, if x is interpreted as one player’s strategy, y as
the other’s, and u as the first player’s utility, then the assumption of increasing
differences is essentially the assumption of strategic complementarity: when the
second player increases his choice variable(s), it becomes more profitable for the
first to increase his as well.
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Definition (Order Continuity and Semi-continuity) A chain C ⊂ A is a totally
ordered subset of the lattice A, that is, for any x ∈ C and y ∈ C,x > y or
y > x. Given a complete lattice A, a function f : A → R is order continu-
ous if it converges along every chain C (in both the increasing and decreasing
directions), that is, if limx∈C,x↓inf(C) f(x) = f(inf(C)) and limx∈C,x↑sup(C) f(x) =
f(sup(C)). It is order upper semi-continuous if lim supx∈C,x↓inf(C) f(x) 6 f(inf(C))
and lim supx∈C,x↑sup(C) f(x) 6 f(sup(C)).

We will now give the most general definition of a supermodular game.

Definition (Supermodular Game)
Consider now a game Γ in strategic form where each player i ∈ V has a strategy

set Ai that comes with a partial order ≥. The game Γ is a supermodular game if,
for each i ∈ V :

• Ai is a complete lattice;

• ui : Ai → R ∪ {−∞} is order upper semi-continuous at xi (for fixed x−i ) and
order continuous at x−i (for fixed xi ) and has a finite upper bound;

• ui has increasing differences in xi and x−i.

This definition is not always very practical. Luckily, for many games of interest,
including the one that we will study in the second part of this dissertation, the
conditions of supermodularity can be easily checked using the following Proposi-
tion.

Proposition 2.4.1 Consider a game Γ in strategic form where each player i ∈ V has a
strategy set Ai that comes with a partial order ≥. Then, Γ is supermodular if, for each
i ∈ V, the following conditions hold:

• Ai is an interval in Rki , that is

Ai =
[
y
i
, ȳi

]
=
{
x | y

i
6 x 6 ȳi

}
• ui is twice continuously differentiable on Ai;

• ∂2ui
∂xi∂xj

≥ 0 for all i 6= j.

We point out that the differentiability condition can be replaced with a weaker
condition on finite differences but this will suffice for our purposes.
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Example:
(Bertrand Competition)

Suppose that V is a set of firms that simultaneously choose prices of a single
good in order to maximize their profit. Assume that the demand of the good,
given the prices (pi)i∈V, is given by the linear function

di (pi, p−i) = ai − bipi +
∑
j 6=i

dijpj ,

where bi, dij ≥ 0. The utility of each firm is given by its profit:

ui (pi, p−i) = (pi − ci)Di (pi, p−i) ,

where ci ≥ 0 is the marginal cost.

Notice that Ai = R+ and
∂2ui
∂pi∂pj

= dij ≥ 0. Hence, the game is supermodular

by Proposition 2.4.1.

Example:
(Cournot Duopoly)

Let us consider again the Cournot duopoly introduced in Example 2.4.1. Let
us assume that the price function p(q) is such that

p′(q) + xip
′′(q) ≤ 0

which formalize the reasonable assumption that firm i’s marginal revenue de-
creases in q−i. Let us now re-parameterize the game by introducing the new
variables z1 = x1 and z2 = −x2 so that q = z1 − z2. With this choice we have
that Ai = R+ and

∂2u1
∂z1∂z2

= −
(
p′(q) + z1p

′′(q)
)
≥ 0 (13)

∂2u2
∂z1∂z2

= −p′(q) + z2p
′′(q) = −

(
p′(q) + q2p

′′(q)
)
≥ 0. (14)

Hence, the game is supermodular by Proposition 2.4.1.

In general, submodular two player games can be made supermodular by
reversing the order on one of the strategies so that they also exhibit the use-
ful properties of supermodular games. This trick does not work, however, for
more than two-player games, which may exhibit dramatically different proper-
ties than the supermodular ones.
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Notice that supermodular games model the so called strategic complements
effect: the increase of one player’s action makes more profitable for the others also
to increase theirs.

Most of the properties of supermodular games stem from the following key fact
(see [45]):

Proposition 2.4.2 For a supermodular game
(
V, {Ai}i∈V , {ui}i∈V

)
, the following facts

hold:

• For every i ∈ V and x−i, the best response set Bi (x−i) has a maximum and a minimum
element denoted, respectively, B+

i (x−i) and B−i (x−i);

• B+
i (x−i) and B−i (x−i) are monotone non-decreasing in x−i.

The above proposition can be used to prove the following fundamental state-
ment, whose proof can be found in [45], gathering key properties that these games
feature.

Proposition 2.4.3 Let Γc =
(
V, {Ai}i∈V , {u(xi,x−i, c)}i∈V

)
be a family of supermodu-

lar games with utilities parameterized by c ∈ R, then the following holds:

• For fixed c, Γc admits a non-empty complete lattice X(c) of Nash equilibria. In particular,
there exist a minimal pure Nash equilibrium x(c) and a maximal pure Nash equilibrium
x̄(c) in X(c);

• for fixed c the discrete-time synchronous best response dynamics, where each player i plays: xi(t+ 1) = B−i (x−i(t), c)

xi(0) = minAi

,

 xi(t+ 1) = B+
i (x−i(t), c)

xi(0) = maxAi

converge to x(c) and x(c) respectively for t→∞;

• Suppose that for all i,x−i,ui (xi,x−i, c) is supermodular in (xi, c). Then x(c),x(c) are
monotone non-decreasing functions of c.

Notice that the first two bullets of Proposition 2.4.3 follow from the fact that
the discrete-time best response dynamics of a supermodular game is a monotone
system on a complete lattice and hence Proposition 2.3.2 applies. Moreover, this
result implies that, when the Nash equilibrium is unique (x(c) = x(c) ), there is
global convergence of the discrete-time synchronous best response dynamics to it.



3
T H E S AT U R AT E D E Q U I L I B R I U M M O D E L

3.1 introduction

In this Chapter, we undertake a fundamental study of a saturated equilibrium
models in networks with positive externalities. Precisely, we consider the follow-
ing fixed point equation

xi = min

max


n∑
j=1

xjPji + ci, 0

 ,wi

 , i = 1, . . . ,n , (15)

where P in Rn×n
+ is a non-negative square matrix and w in Rn

+ is a non-negative
vector that jointly describe a network, while c in Rn is an exogenous flow vector.
Equation (15) can be more compactly rewritten as

x = Sw0

(
P>x+ c

)
. (16)

where Sw0 denotes the vector saturation function

(Sw0 (x))i = min{max{xi, 0},wi}, i = 1, . . . ,n , (17)

We shall refer to vectors x that are solutions of (16) as equilibria of the network
(P ,w) with exogenous flow c. Notice that the range of the vector saturation func-
tion Sw0 is contained in the complete lattice

Lw0 = {x ∈ Rn : 0 ≤ x ≤ w} . (18)

As the lattice Lw0 is a nonempty, convex, and compact set, and x 7→ Sw0 (P
>x+ c)

maps Lw0 in itself with continuity, existence of network equilibria directly follows
from Brower’s fixed point Theorem. Hence, the set X ⊆ Lw0 of network equilibria
is always nonempty. On the other hand, the structure of such network equilibria
as well as their uniqueness and dependence on the exogenous flow prove to be
more delicate issues. They will be the object of this Chapter.

In financial networks, starting with the seminal work of Eisenberg and Noe [25],
the entries of the vector w represent the obligations of the various institutions,
those of the exogenous flow c represent the balance between assets possessed by
the entities and their obligations towards institutions outside the network, while

21
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P is a row-stochastic or sub-stochastic matrix describing the way obligations of
an entity are split among the others thus encoding the backbone of the financial
system interconnections. An equilibrium x represents, in this context, a set of pay-
ments that clear the network in a consistent way. A key question is to understand
the extent to which a shock hitting the value of the assets of a single node i (per-
turbation of ci) reflects on the entire network and leads to possible cascade effects.
In particular, a default node is defined as one for which the quantity

∑
j Pjixj + ci

(representing the liquidity of the entity i) is below the value of its obligation wi
and the default is called partial or total if, respectively,

∑
j Pjixj + ci > 0 or not.

Despite its apparent simplicity, this framework has proved to be very useful for
analyzing how losses propagate through the financial system. Previous works in-
cluding [40, 2, 28, 50] have analyzed conditions for uniqueness of the clearing
payment equilibrium x and studied its dependence on the exogenous flow vector
c. In particular, Eisenberg and Noe themselves [25] find sufficient conditions for
uniqueness of clearing payment equilibria x in the special case of non-negative
exogenous flow vector c and prove monotonicity and concavity of x as a function
of c. Glasserman and Young [28] also consider the case of non-negative exoge-
nous flow c and extend the sufficient conditions for uniqueness of the clearing
payment equilibrium x in [25] to cover the case where the matrix P has spectral
radius ρ(P ) < 1. They also estimate the extent to which interconnections increase
expected losses and defaults under a wide range of shock distributions, providing
bounds on the potential magnitude of network effects on contagion and loss am-
plification. [2] consider a particular case of the Eisenberg and Noe model where
the network is regular and prove that the clearing payment equilibrium is gener-
ically unique with respect to values of the exogenous flow c in Rn. Furthermore,
they prove rigorous results about the resilience of different network topologies de-
pending on the shock magnitude. Liu and Statum [40] use linear programming to
provide a sensitivity analysis of Eisenberg and Noe model with respect to certain
parameters. Ren it et al. [50] explore several sufficient conditions for uniqueness
of the clearing payment equilibrium, in particular showing that this holds true in
the case where at least one entry of the maximal equilibrium is saturated at its
upper bound or at least one entry of its maximal equilibrium is saturated at 0.

It is worth mentioning that several papers have recently appeared in the theoreti-
cal computer science community about the strategic analysis of financial networks.
Although this studies generally focus on a more computational-based approach,
they propose interesting extensions of the standard Eisenberg and Noe model that
could also be natural generalizations for our results.

In [14] the Eisenberg and Noe model is analyzed from a game-theoretic per-
spective where each institution is a rational agent in a directed graph that has an
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incentive to allocate payments in order to clear as much of its debt as possible. Dif-
ferently from what will be considered in this dissertation, the authors study the
properties of a priority-based clearing mechanisms for financial markets instead
that the standard pro-rata allocation rule. A similar approach is investigated in
[35] where institutions can chose how to prioritize their payments in order to
maximize their utilities. As mentioned before, this strategic aspect results in a
quite different model from the one studied here, where the standard fixed pro-
rata allocation rule for payments is considered.

In [31] the Eisenberg and Noe model is enriched by considering financial deriva-
tives and in particular CDSs (credit default swaps) and authors study the clearing
problem with these new assets.

In [49] authors study whether two banks can gain more assets or mitigate the
effects of external shocks by executing a debt swap in the Eisenberg and Noe
model. It turns out that swapping debts can actually be positive for both banks in-
volved in the swap when their goal is to mitigate their losses in the worst possible
case, which is given by an exogenous shock that makes a subset of banks lose all
their assets in such a way that the banks involved in the swap have the minimum
amount of assets possible.

In quadratic network games, the entries of the vector x represent the actions
strategically chosen by n players, each one seeking to maximize a utility function
ui (x) = cixi − x2i/2+ xi

∑
j Pjixj given by the difference between a linear return

and a quadratic cost depending only on her own action plus a bi-linear term
coupling her action with those of her neighbors in the network. These quadratic
utilities are motivated by the fact that they can model a wide variety of network
games, like imitation and coordination games. Here, the entries of the exogenous
flow c represent the constant marginal benefits of the individual players from
their own actions and coincide with their optimal choices in the absence of net-
work interaction, whereas the nonzero entries of the matrix P correspond to ei-
ther strategic complementarities (if they are positive) of strategic substitutes (if
they are negative) between neighbor players in the network. In the absence of any
constraints on their actions, the players’ best responses are linear functions and
Nash equilibria are solutions of the linear system x = P>x+ c whose existence
and uniqueness can be characterized in terms of the spectral properties of P . In
particular, if P has spectral radius ρ(P ) < 1, then there exists a unique Nash equi-
librium and, in the case when all externalities are positive, [9] show how its aggre-
gate performance can be evaluated in terms of the sum of the individual players’
marginal benefits weighted by their so-called Bonacich network centrality [15].
When upper and lower bounds on the feasible players’ actions are considered, the
best responses prove to be described as the composition of linear functions with
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saturation non-linearities and Nash equilibria coincide with the solutions of the
fixed point equation (16) [19, 17]. In this case, it is known that, while existence is
ensured by convexity and compactness of the strategy profile space as argued be-
fore, uniqueness is lost in general. In this regard, [9] claim that “multiple equilibria
will certainly emerge, which is a plausible outcome in the school setting”, while
[17] acknowledge that “our general knowledge of how unique versus multiple
equilibria depend on parameters and the network is still very fragmented.” For
symmetric quadratic games of strategic substitutes (i.e., non-positive symmetric
P ), Bramoullé et al [16] prove uniqueness of Nash equilibria when P has spec-
tral radius ρ(P ) < 1, building on the fact that in this case the quadratic game is
potential [47] with strictly concave potential function. On the other hand, in the
special case when the exogenous flow c is strictly positive, Belhaj et al [12] pro-
vide sufficient conditions for uniqueness of Nash equilibria for a class of network
games with strategic complements (non-negative P ) that include quadratic games,
generalizing a previous result for fixed points of monotone concave functions [37].

The present Chapter develops a systematic study of the network equilibria de-
scribed by equation (16) in the general case of networks (P ,w) where P is a
non-negative square matrix with spectral radius ρ(P ) ≤ 1 and provides three
fundamental contributions:

(i) We characterize a class of non-expansive networks (c.f. Definition 2.2.4) in-
cluding as a special case networks where P is a row-stochastic or sub-stochastic
matrix and we prove that, for this class, all network equilibria satisfy an in-
variance property (Theorem 3.3.2) with respect to a certain partition of the
node set in surplus, exposed, and deficit nodes (c.f. Section 3.3.2);

(ii) We analyze the structure of the set of network equilibria with respect to topo-
logical properties of the network. In particular, we show how to effectively
construct all network equilibria starting from anyone of them and prove
necessary and sufficient conditions for uniqueness of the network equilib-
rium in the general case of spectral radius ρ(P ) ≤ 1 (Theorem 3.4.3). This
result subsumes and extends the ones available in the previously surveyed
literature on financial networks, as in this context P is always a stochastic
or sub-stochastic matrix, hence with spectral radius ρ(P ) ≤ 1. It is worth
emphasizing that uniqueness conditions we derive can be easily checked a
priori without the need for computing the network equilibrium itself.

(iii) We show that network equilibria exhibit a jump discontinuity in their depen-
dence on the exogenous flow vector c when this is crossing certain regions
of measure 0 representable as graphs of continuous functions, where the
uniqueness of equilibrium is lost (Theorem 3.5.1). We provide an analytical
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description of the discontinuity set and we quantify the size of the largest
jump (Corollary 3.5.2). In the financial network application, this can be in-
terpreted as a jump in the aggregate loss function (c.f. Section 3.5.1 and
Example 3.5.1).

Notice that, in contrast to some of the previously reviewed literature, we do not
make any symmetry or regularity assumptions on the matrix P describing the
network (c.f. [9, 19, 27, 16, 17, 3, 2]), nor on the sign of the exogenous flow c (c.f. [25,
28, 12]). This creates several technical challenges as in particular, we cannot rely
on the theory of potential games (which would require P to be symmetric) and
we have to deal with possible effective saturations at both the upper and the lower
bound (while, e.g., assuming non-negative c would have removed the impact of
the lower saturation).

From a methodological viewpoint, it is worth pointing out that non-negativity
of the matrix P allows one to interpret the considered network equilibria as the
Nash equilibria of a particular class of games with strategic complementarities.
This implies that some of the general results in the theory of supermodular games
[56, 45, 58, 57] can be applied in order to guarantee, e.g., that the set of network
equilibria is a complete lattice, as well as the validity of certain comparative statics
[46], in particular that the minimal and maximal network equilibria are monotone
functions of the exogenous flow vector c, of the upper saturation vector w, and
of the matrix P itself (Proposition 3.3.1). However, we depart quite soon from the
general theory of supermodular games and develop an approach to the study of
such monotone linear saturated network systems that partly hinges on some of
the theory of non-negative matrices [13] (c.f. Proposition 2.2.1). Key steps in our
treatment include the derivation of some ad hoc technical results exploiting finer
spectral and topological properties of the network (Propositions 2.2.2, 3.4.1, and
3.4.2) that then prove instrumental in the proof of our main results (Theorems
3.3.2, 3.4.3, and 3.5.1). We notice that our results for non-expansive networks are
somewhat reminiscent of the Rural Hospitals Theorem [52, 53] in the matching
literature which, under suitable assumptions, shows that the set of stable match-
ings (hence, the equilibria in that setting) is a distributive lattice and satisfies a
fundamental invariance property.

The rest of this Chapter is organized as follows. The remainder of this Intro-
duction is devoted to a brief explanation of the main notational conventions to
be followed throughout the Chapter. Section 3.2 presents the two main motivat-
ing applications for the model considered, i.e., financial networks and network
games with linear saturated best replies. Section 3.3 establishes a number of pre-
liminary results on the structure of the equilibria. Uniqueness results as well a
general expression describing all solutions in non-uniqueness cases is presented
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in Section 3.4. Section 3.5 is devoted to the analysis of jump discontinuities in the
equilibrium with respect to the variation of the exogenous flow vector with a par-
ticular focus on financial networks. The Chapter ends with Section 3.6 dedicated
to draw some conclusions and open problems.

3.2 applications

In this section, we describe two main motivating applications. We start in Sec-
tion 3.2.1 by presenting a model of financial networks generalizing the one first
considered in [25]. We then provide an interpretation of network equilibria as
Nash equilibria for a class of network games with monotone linear saturated best
responses, as explained in Section 3.2.2. Moreover, the considered notion of equi-
librium in saturated networks and the results derived in the following sections
may find application in other contexts, such as, e.g., in some dynamical flow net-
work models with fixed routing, which will be the object of Chapter 4.

3.2.1 Payment equilibria in financial networks

We consider a set V = {1, . . . ,n} of financial entities (e.g., banks, broke dealers,...)
interconnected by internal and external obligations that are specified by a non-
negative matrix W in Rn×n

+ and three non-negative vectors a, b, and u in Rn
+

whose entries have the following interpretation:

• Wij ≥ 0 is the liability of node i to node j;

• ai is the total value of assets and credits of i from external entities;

• bi is the total liability of node i to external non-financial entities;

• ui is the total liability of node i to external financial entities.

The quantity vi =
∑

jWji −
∑

jWij + ai − bi − ui is the net worth of node i. If
the condition vi ≥ 0 is verified for every i in V, it means that each node is fully
liable and in principle capable to pay back all its liabilities to the nodes in the
network as well the external ones. In case when instead some nodes do not satisfy
the condition vi ≥ 0, namely they are not fully liable, it is necessary to determine
a consistent set of payments among the various nodes.

Put wi =
∑

jWij + ui and

Pij =

 Wij/wi if wi > 0

0 otherwise
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We define by Xij the payment from node i to node j and by Xio the payment
from node i to external financial entities. Assuming that liabilities to non-financial
entities have a higher seniority and that all other payments (including those to
external financial entities) should be proportional to the corresponding liabilities,
a consistent set of payments among the nodes has to satisfy the relations

Xij = min

{
Pij max

{∑
k

Xki + ai − bi, 0

}
,Wij

}

Xio = min

{
ui
wi

max

{∑
k

Xki + ai − bi, 0

}
,ui

} (19)

Let xi =
∑

j Xij + Xio be the total payment of node i to the financial entities.
Summing the relations in (19) and using the fact that Wij = wiPij , we obtain

xi = min

{
max

{∑
k

Xki + ai − bi, 0

}
,wi

}
(20)

so that, Xij = xiPij . Relation (20) can thus be rewritten as

xi = min

{
max

{∑
k

xkPki + ai − bi, 0

}
,wi

}
(21)

This set of relations is equivalent to (19). Indeed, if the vector x solves (21), then
Xij = xiPij solves (19). This coincides with (15) with exogenous flow c = a− b. It
is worth noticing that, in the financial jargon, vectors x are called clearing vectors.

Notice that the matrix P is sub-stochastic in its strict sense (i.e., at least one row
does not sum to 1) when either there exist nodes with a positive liability towards
external financial entities, or nodes with no financial liabilities.

In this financial setting, it is often considered the case when we start from a
fully liable configuration, that is vi ≥ 0 for all i, leading to a solution x of (21) such
that xi ≥ wi for all i. We then assume that the outside assets suffer a shock ε ∈ Rn

+

so that their values reduce to a− ε possibly making some of the vi’s negative. The
study of the number of nodes in default xi < wi as a function of the shock ε is one
of the key issues.

3.2.2 Network games with monotone linear saturated best responses

We consider games with player set V = {1, . . . ,n}, whereby each player i in V

chooses an action xi from the compact interval Ai = [0,wi], where wi > 0. We
gather all actions in a vector x to be referred to as the strategy profile. Following a
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standard notational convention in game theory, we indicate by x−i in
∏
j 6=iAj the

strategy profile of all players other than player i.
First, we consider the case of quadratic utility functions

ui (x) = ui(xi,x−i) = cixi −
x2i
2

+ xi
∑
j

Pjixj , (22)

for every player i in V and strategy profile x. In (22), ci denotes the marginal benefit
of individual i from its own action, while P is a non-negative matrix describing
the strategic interactions among the various players. Notice that, absent network
effects, i.e., in the special case P = 0, ci is the optimal action of player i.

Such games are known in the literature as constrained quadratic network games.
Notice that the quadratic utility function ui in (22) implies that the best response
of a player i in V is always unique and given by

Bi(x−i) = min

max


n∑
j=1

xjPji + ci, 0

 ,wi

 . (23)

It follows that Nash equilibria for such constrained quadratic network games are
exactly the solutions of the fixed point equation (16).

In this work, we focus on the special case where the coefficients Pji are all non-
negative. In this way, we are considering games of pure strategic complements:
for every player i, the higher the value of x−i, the higher the rate of variation of
the utility ui(xi,x−i) of player i with respect to its own action xi. As explained
in Section 2.4.3, games such that actions belong to compact spaces and utilities ui
are twice differentiable functions with non-negative cross derivatives

∂2ui
∂xi∂xj

= Pji ≥ 0

for every i and j with j 6= i, are supermodular. It is known, as seen in Proposition
2.4.3, that supermodular games always admit a complete lattice of Nash equilibria
and in our case they coincide with the solutions of (16). This fact will be exploited
in the Section 3.3.1.

In fact, our analysis applies to the broader class of network games with linear
saturated best response as in (23). This includes, e.g., games with player set V,
action space Ai = [0,wi], for every player i in V, and utility functions in the form

ui(x) = ϕi

xi − ci +∑
j 6=i

Pjixj

 , (24)

for a continuous function ϕi : R→ R that is increasing on (−∞, 0] and decreasing
in [0,+∞) [17]. Notice that (22) is a special case of (24) with ϕi(y) = −y2/2.
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1

0 1 23/2

x2

x1

Figure 5: Set of network equilibria for the network in Example 3.3.

3.3 structural properties of network equilibria

While existence of network equilibria is guaranteed for every network (P ,w) and
exogenous flow c, as discussed in Section 3.1, their uniqueness or multiplicity
and more generally the structure of the network equilibrium set X remain more
delicate issues, as also illustrated in the following simple example.

Example:
Consider a network (P ,w) with n = 2,

P =

[
1 1

0 1
2

]
, w =

[
2

1

]
,

and the exogenous flow

c =

[
0

−1

]
.

In this case, the fixed-point equation (16) reads

x1 = S2
0(x1) , x2 = S1

0(x1 + x2/2− 1) , (25)

and the set of network equilibria is then

X =
{(
t,S1

0(2t− 2)
)

: 0 ≤ t ≤ 2
}
, (26)

as displayed in Figure 5.

In the rest of this section, we study structural properties of the set of network
equilibria X for a network (P ,w) with exogenous flow c, i.e., for the set of solu-
tions of the fixed-point equation (16). Specifically, the contribution of this section
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is threefold. First, we exploit the fact that the network equilibrium set X can be
interpreted as the set of Nash equilibria of the n-player supermodular game with
utilities as in (22) and we establish a number of results concerning the lattice
structure of X and its monotone dependence on the exogenous flow c. Second, we
review some classical results on the spectral theory of non-negative matrices and
derive some additional properties of the set of network equilibria X for a special
class of non-expansive networks. Third, we introduce a fundamental partition of
the node set into three subsets and prove that such partition is invariant with re-
spect to the entire set of network equilibria for non-expansive networks. We wish
to remark that, while the results concerning the lattice structure hold true in gen-
eral for every network (P ,w), the rest of the results are instead deeply connected
to the finer spectral assumptions on the matrix P (c.f. Definition 2.2.4) and do not
hold true for general networks. In particular, such results involve properties of the
network equilibrium set that will play a crucial role in the following sections.

3.3.1 Lattice properties of the set of network equilibria

For a network (P ,w) and an exogenous flow c, consider the following recursion
on the complete lattice Lw0 :

x(t+ 1) = Sw0 (P
>x(t) + c) , t ≥ 0 . (27)

Notice that equation (27) can be interpreted as the update rule of a synchronous
best response dynamics for the supermodular game with utilities as in (22). The
following proposition gathers a number of results on the network equilibria set
X that follow immediately from Proposition 2.4.3 as a direct consequence of such
game-theoretic interpretation.

Proposition 3.3.1 Consider a network (P ,w) and an exogenous flow c and let X be
the corresponding set of network equilibria. Let x(t), for t = 0, 1, . . . , be the sequence
generated by the recursion (27) with initial condition x(0) = x0 in Lw0 . Then:

(i) X is a complete lattice in Rn. In particular, there exist a minimal network equilibrium x

and a maximal network equilibrium x in X;

(ii) if x0 = 0, then x(t) is non-decreasing and limx(t) = x as t grows large;

(iii) if x0 = w, then x(t) is non-increasing and limx(t) = x as t grows large;

(iv) both x and x are monotone non-decreasing functions of the exogenous flow c in Rn, of the
matrix P in Rn

+, and of the upper saturation vector w in Rn
+.
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Remark Observe that the recursion (27) can be implemented as a distributed iter-
ative algorithm, whereby at every time t = 0, 1, . . ., each node i in V updates in
parallel its state xi(t) to

xi(t+ 1) = Swi0

(∑
j
Pjixi(t) + ci

)
.

Notice that such update only requires each node i to observe the current states
xj(t) of its in-neighbors {j ∈ V : Pji > 0} and the total complexity of each iteration
of (27) is of the order of the number of links in the network, i.e., the number of
non-zero entries of P .

We now make some more refined considerations on the convergence time. Con-
sider the recursion (27) with the initial condition x(0) = 0 and let t−i = inf{t ≥ 0 :
xi(t) = wi} for every i = 1, . . . ,n. By Proposition 3.3.1 (ii), whenever t−i < +∞ we
have xi(t) = wi for every t ≥ t−i . Analogously, by considering the recursion (27)
this time with the initial condition x(0) = w and letting t+i = inf{t ≥ 0 : xi(t) = 0}
for i = 1, . . . ,n, Proposition 3.3.1 (iii) guarantees that, whenever t+i < +∞we have
xi(t) = 0 for every t ≥ t+i . Observe that, since x ≥ x, we necessarily have that at
most one between (and possibly neither of) t−i and t+i is finite. Let ti = min{t−i , t

+
i }

for all i = 1, . . . ,n. Then, when t∗ = max{ti : 1 ≤ i ≤ n} < +∞, we have a unique
network equilibrium x∗ = x = x with every entry saturated from either below
or above and convergence in finite time t∗ is guaranteed to x∗ from every initial
condition x(0) in Lw0 . In contrast, when ti = +∞ for some i convergence typically
occurs in infinite time, see Remark 3.3.2 for further considerations in this case.

In the following, we will make use of the definition of non-expansive network
given in 2.2.4. A few comments are in order:

Remark Consider a non-expansive network (P ,w) and let ‖ · ‖ be the monotone
vector norm defined by (6) for a positive vector v satisfying (5). Then, for arbitrary
vectors x, x̃, c, c̃ in Rn, we have

‖Sw0 (P>x+ c)− Sw0 (P>x̃+ c̃)‖ =
n∑
i=1

vi|Swi0 ((P>x)i + ci)− Swi0 ((P>x̃)i + c̃i)|

≤
n∑
i=1

vi|(P>x)i + ci − (P>x̃)i − c̃i|

≤
n∑
i=1

vi|(P>(x− x̃))i|+
n∑
i=1

vi|ci − c̃i|

= ‖P>(x− x̃)‖+ ‖c− c̃‖

≤ ‖x− x̃‖+ ‖c− c̃‖ ,
(28)
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where the first inequality above follows from monotonicity of the weighted l1-
norm ‖ · ‖ and the last one from (7). This property justifies the terminology intro-
duced in Definition 2.2.4.

Remark It is worth pointing out that existence of a (not necessarily monotone)
vector norm ‖ · ‖ on Cn such that (7) holds true can be guaranteed under slightly
weaker assumptions than those in Definition 2.2.4. Specifically [39] shows that this
is equivalent to that either ρ(P ) < 1 or ρ(P ) = 1 and the geometric multiplicity
of every eigenvalue λ of P with |λ| = 1 is equal to its algebraic multiplicity. In
fact, notice that, when ρ(P ) = 1, that every basic class of P is final implies that
the geometric multiplicity of every eigenvalue λ of P with |λ| = 1 is equal to
its algebraic multiplicity, but not vice versa. For a counterexample, take P as in
Example 3.3: there P has unitary spectral radius and λ = ρ(P ) = 1 is a simple
eigenvalue, with algebraic and geometric multiplicities both equal to 1, however,
there are two classes, V1 = {1} and V2 = {2}, the first of which is basic but not
final.

In fact, such stricter condition (ii) in Proposition 2.2.2 in the case when ρ(P ) = 1

ensures not only existence of a vector norm ‖ · ‖ on Cn such that (7) holds true,
but also that such a vector norm can be chosen as a weighted l1-norm (6). It
is exactly the monotonicity of such a norm that allows one to show that non-
expansiveness is preserved when composing the affine map P>x + c with the
nonlinear saturation Sw0 ( · ), as in (28).

3.3.2 Invariance property of network equilibria

In this subsection, we show that the set of network equilibria X of every non-
expansive network presents a relevant invariant property that will play a key role
in the uniqueness results presented in the next section.

Consider an arbitrary network (P ,w) with exogenous flow c. For a network
equilibrium x in X, we can always introduce the following partition of the node
set V = {1, 2, . . . ,n}:

V = Vx− ∪Vx+ ∪Vx0 , (29)

where

• Vx+ =
{
i ∈ V : ci +

∑
k 6=i Pkixk > wi

}
is the set of surplus nodes;

• Vx0 =
{
i ∈ V : 0 ≤ ci +

∑
k 6=i Pkixk ≤ wi

}
is the set of exposed nodes;

• Vx− =
{
i ∈ V : ci +

∑
k 6=i Pkixk < 0

}
is the set of deficit nodes.
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Observe that, by the way these sets have been defined, it directly follows that

xi = 0 , ∀ i ∈ Vx− ,

xi = wi , ∀ i ∈ Vx+ ,

xi = ci +
∑

j 6=i Pjixj , ∀ i ∈ Vx0 .

(30)

We now show that, if the network (P ,w) is non-expansive, then partition (29)
is invariant with respect to the chosen network equilibrium. This is stated in the
following, which is the key result of this section and will be instrumental to all
our future derivations.

Theorem 3.3.2 For a non-expansive network (P ,w) and any exogenous flow c in Rn,
the partition (29) is invariant over all equilibria x in X.

Proof We shall consider the maximal network equilibrium x and any another
network equilibrium x in X and show that they share the same node partition (29).
To begin with, notice that, since x ≥ x, we have Vx+ ⊇ Vx+ and Vx− ⊆ Vx−. Let us
split nodes in five different classes, C1,C2,C3,C4,C5, corresponding to the possible
cases in which the entries of the network equilibria x and x can differ and are
precisely defined as follows:

• C1 = Vx+ is the set of nodes that are surplus for both equilibria;

• C2 = Vx+ \Vx+ is the set of nodes that are surplus for x but not for x;

• C3 = Vx0 ∩Vx0 is the set of nodes that are exposed for both equilibria;

• C4 = Vx0 \Vx0 is the set of nodes that are exposed for x and deficit for x;

• C5 = Vx− is the set of nodes that are deficit for both equilibria.

We shall write any vector y in Rn in a block form y = (y(1), y(2), y(3), y(4), y(5)) and
for simplicity of notation indicate Q(ij) :=

(
P>
)
CiCj

for i, j = 1, . . . , 5. Notice that

x(1) = x(1) = w(1), x(5) = x(5) = 0, and

w(2) = x(2) <

4∑
k=1

Q(2k)x(k) + c(2), x(2) ≥
4∑

k=1

Q(2k)x(k) + c(2) , (31)

x(3) =
4∑

k=1

Q(3k)x(k) + c(3), x(3) =
4∑

k=1

Q(3k)x(k) + c(3) , (32)

x(4) =
4∑

k=1

Q(4k)x(k) + c(4), 0 = x(4) >
4∑

k=1

Q(4k)x(k) + c(4) . (33)
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Put z = x− x ≥ 0 and notice that, for classes C1 and C5 we have that z(1) =
z(5) = 0. For the remaining blocks, using (31), (32), and (33), we obtain

z(2) <
4∑

k=2

Q(2k)z(k) , z(3) =
4∑

k=2

Q(3k)z(k) , z(4) <
4∑

k=2

Q(4k)z(k) . (34)

Now, assume by contradiction that C2 ∪ C4 6= ∅, so that the above would imply
that

z � P>z . (35)

Since the network is non-expansive, by Proposition 2.2.2 there exists a positive
vector v such that (5) holds true. Together with (35), this would imply that

v>z < v>P>z ≤ v>z ,

thus leading to a contradiction. This implies that necessarily C2 = C4 = ∅, so
that z = 0, thus showing invariance of the node partition (29) with respect to the
network equilibria x in X.

We gather some immediate consequences of Theorem 3.3.2 in the following
result.

Corollary 3.3.3 Let (P ,w) be a non-expansive network. Then, for every exogenous flow
c, there exists a partition of the node set

V = V+ ∪V0 ∪V− , (36)

such that, indicated with z = (z(+), z(0), z(−)) the corresponding block decomposition of
a vector z in Rn and with P (αβ) = P|Vα×Vβ for α, β = −, 0,+,

(i) for every network equilibrium x in X

x(−) = 0 , x(0) = P (00)>x(0) + P (+0)>x(+) + c(0) , x(+) = w(+) ; (37)

(ii) for every two network equilibria x and y in X,

x(−) = y(−) , x(+) = y(+) . (38)

Corollary 3.3.3 implies that uniqueness can always be tested by simply looking
at those entries of the network equilibria that belong to V0 and that such entries
solve a linear system of equations. However, the outstanding difficulty in the anal-
ysis of the equilibrium set X stems from the fact that the partition (36) is not
known a priori, a problem that will be dealt with in the next section.
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Remark The necessity of the additional assumption that every basic class of P is
final for networks (P ,w) where P is non-stochastic and ρ(P ) = 1 is illustrated by
Example 3.3. In the network considered there, P has two classes: {1} that is basic
but not final and {2} that is final but not basic. In fact, it is easily seen from (25)
and (26) that, while node 1 is always exposed for every network equilibrium x in
X, node 2 is:

• a deficit node for every network equilibrium x in X− = {(t, 0) : 0 ≤ t < 1};
• an exposed node for every network equilibrium x in X0 = {(t, 2t− 2) : 1 ≤ t ≤
3/2};
• a surplus node for every network equilibrium x in X+ = {(t, 1) : 3/2 < t ≤ 2}.

Therefore, partition (29) is clearly equilibrium-dependent in this case. As already
pointed out in Remark 3.3 in this case the matrix P has unitary spectral radius
and its eigenvalue λ = ρ(P ) = 1 has algebraic and geometric multiplicities both
equal to 1. This shows that, when ρ(P ) = 1, the weaker condition that λ = 1

has algebraic multiplicity equal to its geometric multiplicity is not sufficient for
the conclusions of Theorem 3.3.2 and Corollary 3.3.3 to hold true and the stricter
assumption that every basic class be final is required.

Remark For a non-expansive network, consider once again the recursion (27) and,
for i = 1, . . . ,n, let ti be defined as in Remark 3.3. Assume that ti = +∞ for some i
and let t∗ = max ({0} ∪ {ti : ti < +∞}). Then, by combining the considerations in
Remark 3.3 with Theorem 3.3.2 we get that the recursion (27) started in x(0) = 0

and x(0) = w respectively determines partition (36) by time t∗. Indeed, the surplus,
deficit, and exposed nodes are exactly those i = 1, . . . ,n such that xi(t∗) = wi,
xi(t∗) = 0, 0 < xi(∗) < wi, respectively, for the sequence x(t) generated by the
recursion (27) started in an arbitrary initial condition x(0) in Lw0 . Notice that, once
such partition has been determined, in other to find all network equilibria, one is
simply left to solve the linear system

xi = ci +
∑
j 6=i

Pjixj , ∀ i ∈ V0 ,

with boundary conditions xi = 0 for all i in V− and xi = wi for all i in V+,
something that can be performed in finite time using standard algorithms for
linear systems, e.g., Gaussian elimination.



3.4 geometry and uniqueness of network equilibria 36

3.4 geometry and uniqueness of network equilibria

In this section, we undertake a fundamental geometric study of the set of network
equilibria and, in particular, we derive necessary and sufficient conditions for their
uniqueness. We shall first consider two relevant special cases:

• when the matrix P is asymptotically stable, i.e., such that ρ(P ) < 1 (Proposi-
tion 3.4.1);

• when P is irreducible and such that ρ(P ) = 1 (Proposition 3.4.2).

Then, we build on these two cases in order to prove a general result (Theorem
3.4.3) on the geometric structure of the network equilibrium set X for every net-
work (P ,w) such that P has spectrum contained in the closed unitary disk.

Proposition 3.4.1 For a network (P ,w) such that ρ(P ) < 1 and every exogenous flow
c in Rn, there exists a unique network equilibrium x.

Proof Let x and y in X be two network equilibria and put ∆ = x− y. We know
from Corollary 3.3.3 (ii) that ∆i = 0 for every i in V− ∪ V+. The proof is finished
if V0 = ∅. Otherwise, let z in RV0 and Q in RV0×V0 be the restrictions of ∆ to V0

and of P to V0 × V0, respectively. It then follows from Corollary 3.3.3 (i) that z
satisfies the equation z = Q>z. By Proposition 2.2.1 (ii), ρ(Q) ≤ ρ(P ) < 1, so that
the matrix (I −Q) is invertible and thus z = 0. Therefore, x = y.

We now study the case of networks (P ,w) with P irreducible and such that
ρ(P ) = 1. The following result gives an explicit characterization of the condition
of non-uniqueness as well as a representation of the set of network equilibria.

Proposition 3.4.2 Let (P ,w) be a network such that P is irreducible and ρ(P ) = 1. Let
π and p be, respectively, left and right dominant eigenvectors of P , as in Proposition 2.2.1
(i). Then, for every exogenous flow c, there exists more than one network equilibrium in X

if and only if

p>c = 0, min
i

{
νi
πi

}
+min

i

{
wi − νi
πi

}
> 0 , (39)

where ν is any solution of the equation ν = P>ν+ c (c.f. Proposition 2.2.1 (iv)). Moreover,
in this case, the set of network equilibria is given by

X =

{
x = ν + απ : −min

i

{
νi
πi

}
≤ α ≤ min

i

{
wi − νi
πi

}}
. (40)



3.4 geometry and uniqueness of network equilibria 37

Proof We first analyze the solution on Rn of the non-saturated linear system

x = P>x+ c . (41)

Left multiplying by the vector p, we obtain

p>x = p>P>x+ p>c = p>x+ p>c

so that, for solutions of (41) to exist, it must hold true that p>c = 0. On the other
hand, if condition p>c = 0 is satisfied, since P is irreducible, Proposition 2.2.1 (iii)
and (iv) ensure that the set of solutions of (41) is an affine line

H = {x = ν + tπ : t ∈ R} . (42)

where ν is any solution of (41). Notice that solutions of the linear system (41) that
belong to the complete lattice Lw0 are necessarily network equilibria, i.e., H∩Lw0 ⊆
X . Moreover, observe that H ∩Lw0 coincides with the right-hand side of (40) and
that condition (39) is equivalent to saying that H ∩ Lw0 is a segment of strictly
positive length.

We are now ready to prove the statements of the theorem. Suppose first that
there are multiple equilibria, i.e., |X| > 1. Since P is irreducible, the only class of
GP is basic and final, so that Theorem 3.3.2 implies that the node set partition (36)
is common to all network equilibria. If V− ∪ V+ 6= ∅, since V0 is a proper subset
of V, Proposition 2.2.1 (v) guarantees that the restriction Q of P to V0 × V0 has
spectral radius smaller than 1. Arguing exactly as in the proof of Proposition 3.4.1,
we then deduce that |X| = 1 thus reaching a contradiction. Therefore, necessarily
V = V0. In this case, it follows from Corollary 3.3.3 (i) that all network equilibria
are solutions of (41), i.e., H ∩Lw0 = X. By our previous considerations, since this
set is nonempty, the condition p>c = 0 must hold true. Moreover, |X| > 1 implies
that H ∩Lw0 must be a segment of positive length that, as previously observed, is
equivalent to the second condition in (39).

Suppose now that the conditions in (39) hold true. Then previous considerations
imply that H∩Lw0 ⊆ X is a segment of positive length. Non-uniqueness of network
equilibria is thus proven.

Finally, notice that, if any of the two equivalent conditions hold, then H∩Lw0 =
X and this is equivalent to representation (40).

Remark The result above has a simple geometric interpretation in part already
exploited in the proof. Assuming that p>c = 0, the line H defined in (42) is the set
of solutions of the non-saturated linear system (41). The non-uniqueness condition
(39) is simply the condition that this line intersects the interior part of the lattice
Lw0 and the set of equilibria in this case is the segment obtained by this intersection.
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The minimal and maximal equilibria are the boundary points of this interval. We
notice that the arguments used in the proof also show that, in the case of non-
uniqueness, necessarily all nodes must be exposed nodes, namely V = V0.

Below, we report an explicit calculation of the network equilibria for a three-
dimensional network and two possible exogenous flows, respectively yielding
uniqueness and multiplicity of network equilibria.

Example:
Consider the network (P ,w) where

P =

 0 0.75 0.25

0 0 1

0.3 0.7 0

 , w =

53
2

 .

Notice that the matrix P is stochastic and irreducible, hence we can take p = 1.
The associated graph GP is depicted in Figure 6.

1 2

3

0.75

0.25 1

0.3 0.7

Figure 6: The network of Example 3.4.
We analyze uniqueness for two possible exogenous flows

c(1) = [−1, 1, 0]> c(2) = [−2, 2, 0]> .

First of all, notice that p>c(1) = p>c(2) = 0. Moreover, a direct computation
shows that

min
i

{
ν1i
πi

}
+min

i

{
wi − ν1i
πi

}
≈ 1.60 > 0

min
i

{
ν2i
πi

}
+min

i

{
wi − ν2i
πi

}
≈ −6.41 < 0.

(43)

By Proposition 3.4.2 we deduce that for the flow c(1) there are multiple
equilibria, while for the flow c(2) the equilibrium is unique. The set of network
equilibria X in the two cases is shown in Figure 7. Notice how in the first case
the line H has a non-trivial intersection with the complete lattice Lw0 that is the
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segment of network equilibria. In contrast, in the second case, the line H does
not intersect the complete lattice Lw0 and the unique network equilibrium is a
single point lying on the boundary of the lattice as some of its entries xi are

necessarily saturated at either 0 or wi.
Massai, Como, and Fagnani: Equilibria and Systemic Risk in Saturated Networks
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(a) The network (P,w) with exogenous flow c(1)

admits multiple equilibria (the black thick segment).
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(b) The network (P,w) with exogenous flow c(2)

admits a unique equilibrium (the black dot).

Figure 3. Sets of network equilibria for Example 2.

(ii) given (x(1), . . . , x(l−1)), the projection x(l) on a class Vl such that ρ(P (ll)) = 1 is non-unique
if and only if

p(l)>

(
c(l) +

∑
1≤i<l

P (il)>x(i)

)
= 0 , (35)

and

min
i∈Vl

{
ν
(l)
i

π
(l)
i

}
+ min

i∈Vl

{
wi− ν(l)i
π
(l)
i

}
> 0 , (36)

where
• p(l) = P (ll)p(l) is any right dominant eigenvector of the block P (ll);
• π(l) = P (ll)>π(l) is any left dominant eigenvector of the block P (ll);
• ν(l) = P (ll)>ν(l) +

∑l

i=1P
(jl)>x(i) + c(l).

Moreover, in this case, given [x(1), . . . , x(l−1)]>, the projection x(l) of any equilibrium satisfies

x(l) = ν(l) +απ(l) , −min
i∈Vl

{
ν
(l)
i

π
(l)
i

}
≤ α≤min

i∈Vl

{
wi− ν(l)i
π
(l)
i

}
. (37)

Proof It follows from (2) and the block triangular structure of P (14) that network equilibria
satisfy the iterative relations

x(l) = Sw
(l)

0

(
P (ll)>x(l) +

∑
0≤i<l

P (il)>x(i) + c(l)

)
, l= 1,2, . . . , s . (38)

The above says that the projection x(l) on the class Vl can be interpreted as a network equilibrium
for the network (P (ll),w(l)) and exogenous flow

∑
i<lP

(il)>x(i) + c(l). The claim then follows from
Propositions 4 and 5.

Notice that, as Proposition 1 gives an efficient iterative way of computing the network equilibrium
when this is unique, Theorem 2 provides an explicit way of computing, in an iterative way, the
entire lattice of network equilibria X in the general case when ρ(P )≤ 1.

Remark 8. In the special case when the network is non-expansive (this includes the case when
P is stochastic or sub-stochastic) Theorem 2 admits an important simplification. Indeed, in this

Figure 7: Sets of network equilibria for Example 3.4.

We now study the structure of network equilibria and give a full characteriza-
tion of uniqueness in the general case of networks (P ,w) where P is an arbitrary
non-negative matrix with spectral radius ρ(P ) ≤ 1 and w is an arbitrary non-
negative vector. Our analysis relies on the partition of the node set in the classes
of P

V = V1 ∪ · · · ∪Vs (44)

and on the corresponding triangular structure of P as described in (4).

Theorem 3.4.3 Consider a network (P ,w) such that ρ(P ) ≤ 1, and an exogenous flow
c. Let (44) be the classes of P and assume that P is in the block triangular structure (4).
Indicate the related split of a vector y in Rn as y = [y(1), . . . , y(s)]>. Then, the network
equilibria x in X iteratively satisfy the following properties:

(i) the projection x(l) on a class Vl such that ρ(P (ll)) < 1 is unique;

(ii) given (x(1), . . . ,x(l−1)), the projection x(l) on a class Vl such that ρ(P (ll)) = 1 is non-
unique if and only if

p(l)>

c(l) + ∑
1≤i<l

P (il)>x(i)

 = 0 , (45)
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and

min
i∈Vl

{
ν
(l)
i

π
(l)
i

}
+min

i∈Vl

{
wi − ν

(l)
i

π
(l)
i

}
> 0 , (46)

where

• p(l) = P (ll)p(l) is any right dominant eigenvector of the block P (ll);

• π(l) = P (ll)>π(l) is any left dominant eigenvector of the block P (ll);

• ν(l) = P (ll)>ν(l) +
∑l

i=1 P
(jl)>x(i) + c(l).

Moreover, in this case, given [x(1), . . . ,x(l−1)]>, the projection x(l) of any equilibrium
satisfies

x(l) = ν(l) + απ(l) , −min
i∈Vl

{
ν
(l)
i

π
(l)
i

}
≤ α ≤ min

i∈Vl

{
wi − ν

(l)
i

π
(l)
i

}
. (47)

Proof It follows from (16) and the block triangular structure of P (4) that network
equilibria satisfy the iterative relations

x(l) = Sw
(l)

0

P (ll)>x(l) +
∑
0≤i<l

P (il)>x(i) + c(l)

 , l = 1, 2, . . . , s . (48)

The above says that the projection x(l) on the class Vl can be interpreted as a net-
work equilibrium for the network (P (ll),w(l)) and exogenous flow

∑
i<l P

(il)>x(i)+

c(l). The claim then follows from Propositions 3.4.1 and 3.4.2.

Notice that, as Proposition 3.3.1 gives an efficient iterative way of computing the
network equilibrium when this is unique, Theorem 3.4.3 provides an explicit way
of computing, in an iterative way, the entire lattice of network equilibria X in the
general case when ρ(P ) ≤ 1.

Remark In the special case when the network is non-expansive (this includes the
case when P is stochastic or sub-stochastic) Theorem 3.4.3 admits an important
simplification. Indeed, in this case either ρ(P ) < 1, and then one can use Proposi-
tion 3.4.1 directly to compute the unique network equilibrium (e.g., by using (27)
as a distributed iterative algorithm, c.f. Remark 3.3), or ρ(P ) = 1 and the basic
classes are final so that we can always assume that in the partition (44) they are
the last ones. Precisely, in the latter case, we can assume that

ρ(P (ll)) < 1 for l ≤ m, ρ(P (ll)) = 1 for m < l ≤ s . (49)
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The projection (x(1), . . . ,x(m)) of the network equilibria x on the first m classes is
unique. For each basic class Vl, with m < l ≤ s, the non uniqueness condition of
the projection x(l) is given by

p(l)>

c(l) + ∑
1≤i≤m

P (il)>x(i)

 = 0 , (50)

together with (46). We notice that these conditions only depend on (x(1), . . . ,x(m)).
In other words, once the solution on the non-basic classes is computed, the check
of uniqueness and the parametrization of the solutions in case of non-uniqueness
in the various basic classes are completely decoupled.

Remark Notice that our analysis has mostly focused on networks (P ,w) with
spectral radius ρ(P ) ≤ 1. In fact, Theorem 3.4.3 provides a complete description
of the set of network equilibria X in this case. It is worth stressing out that, for
networks with ρ(P ) > 1, while X remains a nonempty complete lattice as per
Proposition 3.3.1, its geometry can differ quite significantly in this case. In fact,
consider a simple example with a single node, P = 2, and w = 1. Then, depending
of the value of the exogenous flow c in R the set of network equilibria is

X =


{0} if c < −1

{0,−c, 1} if −1 ≤ c ≤ 0

{1} if c > 0 ,

(51)

as illustrated in Figure 8. In particular, notice that for values of the exogenous
flow c in M = [−1, 0], there are multiple isolated network equilibria, specifically
|X| = 2 for c = −1 and |X| = 3 for −1 < c < 0. This is in stark contrast with the
case ρ(P ) ≤ 1, where Theorem 3.4.3 in particular implies that, when the network
equilibrium is not unique, there is in fact a continuum of network equilibria.

3.5 continuity of network equilibria and the lack thereof

In this Section, we study the dependence of the network equilibria of a given
network (P ,w) on the exogenous flow c. This analysis is crucial to study the
way exogenous shocks affect the payment equilibria in financial networks (c.f
Section 3.2.1) or the individual marginal benefits affect the Nash equilibrium in
quadratic network games (c.f. Section 3.2.2).
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−1 0

1

X

c

Figure 8: The set of network equilibria X for the network discussed in Remark 3.4 as a
function of the exogenous flow c.

Let us consider a given network (P ,w) and use the notation

X(c), x(c), x(c)

to emphasize the dependence of, respectively, the set of network equilibria, and
the maximal and minimal network equilibrium on the exogenous flow c. Moreover,
let

U = {c ∈ Rn : |X(c)| = 1} , M = Rn \U , (52)

be the subsets of exogenous flows for which the network equilibrium is unique
and, respectively, there are multiple network equilibria. For exogenous flows c in
U, we shall also use the notation

x(c) = x(c) = x(c)

for the unique equilibrium.
The following result gives a complete picture of the behavior of the set of net-

work equilibria X(c) as a function of the exogenous flow c. It shows that the
set of exogenous flows M for which the network equilibrium is not unique has
Lebesgue measure 0 and is contained in the union of a finite number of graphs
of continuous functions. Moreover, the network equilibrium x(c) is a piece-wise
continuous function of the exogenous flow c that undergoes jump discontinuities
when c crosses the non-uniqueness set M.

Theorem 3.5.1 For a network (P ,w) such that ρ(P ) ≤ 1, let m be number of basic
classes of P and let U and M be defined as in (76). Then,

(i) the non-uniqueness set M has Lebesgue measure 0 and is contained in the closed set
consisting of the union of at most m graphs of scalar continuous functions;

(ii) the map c 7→ x(c) is continuous on the uniqueness set U;
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(iii) for every exogenous flow c∗ in M,

lim inf
c∈U
c→c∗

x(c) = x(c∗) , lim sup
c∈U
c→c∗

x(c) = x(c∗) .

Proof We start with a preliminary computation that will prove useful in the fol-
lowing derivations. Consider a sequence c(1), c(2), . . . of exogenous flows in Rn

such that
c(t)

t→+∞−→ c∗ , x(c(t))
k→+∞−→ x∗ . (53)

Since
x(c(t)) = Sw0

(
P>x(c(t)) + c(t)

)
,

for all t = 1, 2, . . ., passing to the limit in both sides of the above, by continuity we
get that

x∗ = Sw0

(
P>x∗ + c∗

)
,

thus showing that x∗ belongs to X(c∗). In particular, this implies that

x(c∗) ≤ x∗ ≤ x(c∗) . (54)

Arbitrariness of the sequence satisfying (53) and (54) imply that

x(c∗) ≤ lim inf
c∈U
c→c∗

x(c) ≤ lim sup
c∈U
c→c∗

x(c) ≤ x(c∗) (55)

In particular, for every exogenous flow c∗ in U, we have that x(c∗) = x(c∗) and
then relation (55) yields point (ii) of the claim.

Consider now the partition (44) of the node set into the classes of P and as-
sume without loss of generality that P is in the block triangular structure (4). As
usual, we indicate the relative split of any vector y in Rn as y = [y(1), . . . , y(s)]>.
Assume that l1 < · · · < lm are the indices among {1, . . . , s} corresponding to the
basic classes Vl1 , . . . ,Vlm . For a fixed j, we consider the projection of the set of
equilibria on V1 ∪ · · · ∪ Vlj−1. Notice that, because of the triangular structure of
P , such projected set depends on c = [c(1), . . . c(s)]> only through the sub-vector
[c(1), . . . c(lj−1)]>. Suppose that for a given c and for a given j, such projected set
is a singleton and indicate the projected block components of such equilibrium as
x(i)([c(1), . . . c(lj−1)]) for i = 1, . . . , lj − 1. It then follows from Theorem 3.4.3 that a
necessary condition for the projection of the equilibria on V(lj) not to be unique,
is that

p(lj)>

c(lj) +∑
i<lj

P (ilj)>x(i)[c(1), . . . c(lj−1)]

 = 0 (56)
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Now, define the sets Uk,Mk ⊆ R
V1∪···∪Vlk as follows:

Uk = {[c(1), . . . , c(lk)] : [c(1), . . . c(lj)]does not satisfy (56) ∀j ≤ k} ;

Mk = {[c(1), . . . , c(lk)] : [c(1), . . . c(lj)] ∈ Uj ∀j ≤ k− 1, and (56) is satisfied for j = k} .
(57)

Put M̃k = Mk ×R
Vlk+1∪···∪Vm and notice that the considerations above imply that

M ⊆
m⋃
k=1

M̃k (58)

Applying item (ii) to the restricted network consisting of the nodes in V1 ∪ · · · ∪
Vlk we deduce that, for every i = 1, . . . , lk, the functions x(i)([c(1), . . . c(lk)]) are
continuous on the set Uk. This fact, together with the definition of Mk and the
form of condition (56), allows us to conclude that Mk is the graph of a continuous
function defined on Uk−1×R

Vlk
\{sk} where sk is any element in Vlk . An analogous

conclusion then holds true for M̃k. This proves (i).
We are now left with proving (iii). Let c∗ in M be an exogenous flow giving rise

to multiple equilibria and define the sequence of exogenous flows c(t) as follows:

c(i)(t) = c∗(i) − 1

t
p(i) ∀ i = 1, . . . , s .

where p(i) is any right dominant eigenvector of the block P (ii) We claim that
c(t) necessarily belongs to U for sufficiently large t. Indeed, a simple iterative
argument shows that, if t is sufficiently large, [c(1)(t), . . . c(lk)(t)] ∈ Uk for every
k and therefore c(t) 6∈ M̃k for every k. The claim then follows from (58). Since
c(t) ≤ c∗ for every t = 1, 2, . . ., it follows from Proposition 3.3.1 (iv) that

x(c(t)) = x(c(t)) ≤ x(c∗) .

Using relation (55), we deduce that

lim inf
c∈U
c→c∗

x(c) = x(c∗) . (59)

An analogous argument allows us to prove the other relation in (iii) concerning
the lim sup.

For the special case of non-expansive networks (P ,w), we are able to character-
ize the maximum discontinuity jump of the network equilibrium as the exogenous
flow c varies in Rn, as stated in the following result.
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Corollary 3.5.2 For a non-expansive network (P ,w), consider the partition (44) of the
node set into the classes of P and let the block triangular structure of P be as in (4). Let
π(l) be any left dominant eigenvalue relative to P (ll). Then,

(i) for every exogenous flow c, indicated with

Lc = {l = 1, . . . , s |Vl is basic and (50) is satisfied}

the norm of the jump discontinuity of the network equilibrium at c can be expressed as

‖x(c)− x(c)‖pp =
∑

l=1,...,s:
l∈Lc

[min
i∈Vl

wi − ν
(l)
i

π
(l)
i

+min
i∈Vl

ν
(l)
i

π
(l)
i

]+p

‖π(l)‖pp , (60)

where ν(l) is defined in Theorem 3.4.3.

(ii) the maximum jump discontinuity norm is for c = 0 and is given by

max
c∈Rn

‖x(c)− x(c)‖pp = ‖x(0)− x(0)‖pp =
∑

l=1,...,s:
Vl basic

(
min
i∈Vl

wi

π
(l)
i

)p
‖π(l)‖pp , (61)

Proof Formula (60) directly follows from Theorem 3.4.3 by virtue of the non-
uniqueness condition (45) as modified in (50) and the structure of solutions as
expressed in (47). From (60), we obtain that

‖x(c)− x(c)‖pp ≤
∑

l=1,...,s:
l∈Lc

(
min
i∈Vl

wi

π
(l)
i

)p
‖π(l)‖pp ≤

∑
l=1,...,s:
Vl basic

(
min
i∈Vl

wi

π
(l)
i

)p
‖π(l)‖pp

On the other hand, since for c = 0 every l for which Vl is a basic class belongs to
Lc, and since we can choose ν(l) = 0, formula (60) yields (61).

A few comments are in order. First, notice that, for networks such that ρ(P ) = 1,
Theorems 3.4.3 and 3.5.1 ensure that the network equilibrium is generically unique
and at the same time characterize the set M of exogenous flows inducing multiple
network equilibria. As a function of the exogenous flow c, the network equilib-
rium x(c) is proven to be a piece-wise continuous function (it is also monotone
in c thanks to Proposition 3.3.1) with jump discontinuities occurring exactly when
crossing the non-uniqueness set M. For the relevant family of non-expansive net-
works, Corollary 3.5.2 establishes an explicit formula for the value norm of these
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jumps. For networks with ρ(P ) < 1, Proposition 3.4.2 guarantees that the network
equilibrium x(c) is unique for every value of the exogenous flow c and, in this
case, it is a monotone continuous function of it.

Another relevant observation is that the multiplicity of network equilibria for
networks (P ,w) with spectral radius ρ(P ) = 1 and particular exogenous flows c∗

can also be interpreted as an indicator of high sensitivity in the dependence of the
network equilibrium x̃(c) of networks (P̃ ,w) with spectral radius ρ(P̃ ) < 1 that
are sufficiently close to the nominal network (P ,w). This is first illustrated by the
following simple example.

Example Consider the family of networks (P (ε),w), indexed by ε ∈ [0, 1), with
n = 2 nodes and

P (ε) =

[
1− ε 1

0 1/2

]
, w =

[
2

1

]
.

Notice that for ε ∈ (0, 1) we have ρ(P (ε)) = max{1− ε, 1/2} and for every exoge-
nous flow c in R2 there exists a unique network equilibrium x(ε)(c) with entries

x
(ε)
1 (c) = S2

0(c1/ε) , x
(ε)
2 (c) = S1

0(2c2 + 2S2
0(c1/ε)) .

On the other hand, for ε = 0 we recover the same network as in Example 3.3, with
ρ(P (0)) = 1. For such network, the set of exogenous flows giving rise to multiple
equilibria is the whole line M = {(0, t) : t ∈ R}. It is then clear as the sensitivity
of the first entry of the network equilibrium satisfies

∂xε1
∂c1

(0+, c2) =
1

ε

ε↓0−→ +∞ ,

for every c1 in R.

We conclude this section by discussing implications of our results in the two
main motivating applications presented in Section 3.2.

3.5.1 Systemic risk in financial networks

Consider the generalized Eisenberg and Noe financial network model introduced
in Section 3.2.1. In order to measure the aggregated effect of a shock, it is use-
ful to introduce a risk measure known as systemic loss [60]. Let c◦ be a nominal
exogenous flow for which all nodes in the financial network are fully liable, i.e.,
such that x(c◦) = w. Then, let c ≤ c◦ be the exogenous flow after a shock has
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negatively affected the assets and external credits of some of the financial enti-
ties in the network and let x(c) be a corresponding network equilibrium. As in
Section 3.2.1, let the net worth vectors before and after the shock be, respectively,
v◦ = P>w+ c◦ −w and v = P>x(c) + c−w. Then, the systemic loss is defined as
their aggregate difference

l (c◦, c) := 1> (v◦ − v) = 1
> (

P
>
w+ c◦ −w−

(
P
>
x(c) + c−w

))
= 1

>
(c◦ − c) + 1>(w− x(c)) . (62)

In the rightmost side of the expression above, the term 1>(c◦ − c) represents the
direct loss inflicted by the shock, while 1>(w − x(c)) represents the indirect loss
triggered by reduced payments and is also referred to as shortfall term. Then, we
may apply (62) and Theorem 3.5.1 (iii) to obtain the following expression for the
size of the jump discontinuity of the systemic loss at some point c = c∗:

∆l (c∗) := lim sup
c∈U
c→c∗

l (c◦, c)− lim inf
c∈U
c→c∗

l (c◦, c) = ‖x(c∗)− x(c∗)‖1 . (63)

Explicit estimates of the expression above can then be obtained using formula
(60) in Corollary 3.5.2. Systemic loss jumps are expected to play a crucial role in
the resilience analysis of the financial network as they will often be associated to
important failure events where several nodes simultaneously lose their liability, as
illustrated in the following example.

Example:
Consider the financial network of Example 3.4. (Figure 12). The set M of ex-

ogenous flows giving rise to multiple network equilibria is plotted in Figure
9.
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Figure 9: The set of critical shocks M.

Consider an initial exogenous flow c◦ = [5, 2, 2]> and a perturbation of it
c = c◦ − εq, where q = [0.07, 0.59, 0.34]>, and ε ∈ [0, 14]. A straightforward
computation, using condition of Proposition 3.4.2, implies that the only case
where we have multiple equilibria is for ε = 9 corresponding to the exogenous
flow c∗ = [4.4,−3.3,−1.1]> for which

∆l(c∗) = min
i
{νi/πi}+min

i
{(wi − νi)/πi} ≈ 4.44 > 0

The loss function and the equilibrium x as functions of ε are plotted in Figure
10.
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(a) Loss as a function of ε. We can see the jump
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(b) Solution vector as a function of ε. We can see
the jump discontinuity at ε = 9, which brings
nodes 1 and 3 to suddenly default.

Figure 10

In particular, Figure 10 (a) shows how the loss function varies piece-wise
linearly until ε = 9, where it undergoes the jump discontinuity of size ∆l(c∗).
On the other hand, from Figure 10 (b) we can notice that all nodes are solvent
for ε < 6.5 while for ε ≈ 6.5 node 2 goes bankrupt as its outflow falls below
w2 = 3. As the shock magnitude increases, we reach the discontinuity point at
ε = 9 where the network suffers a dramatic crisis as nodes 1 and 3 suddenly
default. Notice in particular how node 3 goes from fully solvent (x3 = w3) to
completely insolvent (x3 = 0) as the shock crosses the critical threshold ε = 9.

Being able to compute critical shocks and the size of loss jumps around them
can have a tremendous importance from a regulator perspective. A centralize au-
thority should in fact try to keep the clearing system sufficiently far from the
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set of critical shocks to avoid sudden defaults. By computing the critical set, the
regulator can estimate the distance of the current exogenous vector c from it and
hence give a measure of robustness of the current clearing state. This can also
suggest optimal aid policies aiming to maximize the distance from the critical set
by injecting liquidity (i.e., by adjusting c) subject to a budget constraint.

3.5.2 Sensitivity of Nash equilibria in constrained quadratic network games

In the literature, the constrained quadratic games introduced in Section 3.2.2 are
often studied [17] with the matrix P parameterized as P (δ) = δG where G is some
fixed matrix encoding the network interconnections and δ > 0 is a parameter
describing the strength of the network interaction among the agents. If we put
δ∗ = ρ(G)−1, we have that ρ(δG) < 1 for δ < δ∗. While Proposition 3.4.2 implies
that, for every fixed δ < δ∗, the network equilibrium is unique and continuous in
the exogenous flow c, its sensitivity to the variations of c may grow unbounded
when δ approaches δ∗. As it turns out, this occurs when the limit network has
multiple equilibria. Indeed, we have the following result showing that in this case,
arbitrarily small variations in the exogenous flow c will determine, for δ close to
δ∗, a variation in the equilibrium of the size of the set of equilibria for the limit
case δ = δ∗.

Corollary 3.5.3 For an irreducible matrix G in Rn×n
+ and a vector w in Rn

+, and δ in
(0, δ∗], where δ∗ = 1/ρ(G)−1, let P (δ) = δG and let x(δ)(c) and x(δ)(c) to be the minimal
and maximal network equilibrium of the network (P (δ),w) with exogenous flow c in Rn.
Also, write x(δ) for the network equilibrium when it is unique. Let c∗ be an exogenous
flow such that the (P δ

∗
,w) has multiple network equilibria. Then,

sup
δ<δ∗

sup
c : ‖c−c∗‖≤ε

‖x(δ)(c)− x(δ)(c∗)‖ ≥ ‖x(δ
∗)(c∗)− x(δ

∗)(c∗)‖ > 0 , (64)

for every monotone norm ‖ · ‖ and every ε > 0.

Proof It follows from the comparative statics in Proposition 3.3.1 (iv) that, for
δ < δ∗,

x(δ)(c∗) ≤ x(δ
∗)(c∗) � x(δ

∗)(c∗) . (65)

Let p be any left dominant eigenvector of G and thus of all P (δ). It then follows
from Proposition 3.4.2 that,

x(δ
∗)(c∗ + εp) = x(δ

∗)(c∗ + εp) , ∀ε > 0 ,
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and thus, by Theorem 3.5.1 and Proposition 3.3.1 (v) again,

lim
δ↓δ∗

x(δ)(c∗ + εp) = x(δ
∗)(c∗ + εp) ≥ x(δ

∗)(c∗) . (66)

For every monotone norm ‖ · ‖, (65) and (66) imply that

lim
δ↓δ∗
‖x(δ)(c∗ + εp)− x(δ)(c∗)‖ ≥ ‖x(δ

∗)(c∗)− x(δ
∗)(c∗)‖ > 0 ,

so that (64) holds true for every ε > 0.

3.6 conclusion

This Chapter has analyzed network equilibria modeled as the solutions of a linear
fixed point equation with saturation non-linearities. Necessary and sufficient con-
ditions for uniqueness and a general expression describing all such equilibria for
a general network with spectral radius not larger than 1 have been proved. Finally,
the dependence of the network equilibria on the exogenous flows in the network
has been studied highlighting the existence of jump discontinuities. This model
was first considered to determine clearing payments in the context of networked
financial institutions interconnected by obligations and it is one of the simplest
continuous model where shock propagation phenomena and cascading failure
effects may occur. It also describes the Nash equilibria of constrained quadratic
network games with strategic complementarities. Our results contribute to an in-
depth analysis of such applications.
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A D Y N A M I C A L F L O W N E T W O R K M O D E L W I T H F I N I T E
C A PA C I T I E S

4.1 introduction

In this Chapter, we study deterministic continuous-time models of dynamical flow
networks where a saturated system such the one described by the fixed point equa-
tion (15) emerges naturally. The key point here is that we consider a dynamical
model in contrast with the static one presented in Chapter 3 and this poses ad-
ditional interesting problems that need to be addressed such that stability and
convergence towards equilibria. Notice that in this case, the term "equilibrium"
refers to the equilibrium point of a dynamical system, which will also satisfy the
same fixed point equation studied in the previous Chapter.

More in details, we consider a finite number of cells exchanging some indis-
tinguishable commodity among themselves and with the external environment.
Cells possibly receive a constant exogenous inflow from outside the network and
a constant flow is possibly drained out of them directly towards the external en-
vironment. We assume that the outflow from a cell is split among its immediately
downstream cells in fixed proportions and that each cell has a finite flow and
buffer capacity. When the total net flow in a cell, consisting of the difference be-
tween the total flow directed towards it minus the outflow from it, exceeds the
cell’s capacity, then the exceeding part of such net flow leaks out of the system.
Also, when the difference between the total exogenous demand on a cell and the
total inflow in it exceeds the cell’s capacity, then the outflow towards the external
environment is reduced by an amount equal to the exceeding part of this differ-
ence. The ensuing network flow dynamics turns out to be a linear saturated sys-
tem with compact state space that we analyze using tools from monotone systems
and contraction theory.

The study of dynamical flows in infrastructure networks has attracted a consid-
erable amount of attention in recent years. In particular, there is a growing body
of literature in the control systems field dealing with issues of stability, optimality,
robustness, and resilience in dynamical flow networks. See, e.g., [48, 42, 26, 22, 11,
23, 20] and references therein. To the best of our knowledge, the study presented
in this Chapter is the first one taking explicitly into account saturation constraints
in a fixed routing network model.

52
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Specifically, we give the following contributions:

• We prove that there exists a set of equilibria that is globally asymptotically
stable. Such equilibrium set reduces to a single globally asymptotically stable
equilibrium for generic exogenous demand vectors;

• we show the existence of critical exogenous demand vectors giving rise to
non-unique equilibria correspond to phase transitions in the asymptotic be-
havior of the dynamical flow network.

Some of the results presented in this Chapter have a perfect correspondence
with those presented in Chapter 3 and are proved to hold true also in this continuous-
time setting. Moreover we exploit properties of monotone systems to prove that
global convergence towards the equilibria is guaranteed.

The rest of this Chapter is organized as follows. The reminder of this section
is devoted to the introduction of some notational conventions to be used. In Sec-
tion 4.2 we present the class of dynamical flow network models that are the object
of our study. Section 4.3 presents the main results concerning the equilibrium set
characterization and its global asymptotic stability, as well as the dependence of
such equilibria on the exogenous demand vector.

As usual, we shall consider the standard partial order on Rn whereby the in-
equality a ≤ b for two vectors a, b ∈ Rn is meant hold true entry-wise. A dynami-
cal system with state space X ⊆ Rn will be referred to as monotone if it preserves
such partial order. Following the notation introduced in Chapter 3, for two vectors
a, b ∈ Rn such that a ≤ b, we shall denote by

Lba = {x ∈ Rn : a ≤ x ≤ b} = Πn
i=1[ai, bi]

the complete lattice and let Sba : Rn → Lba be the vector saturation function defined
by (

Sba(y)
)
i
= max{ai, min{yi, bi}} , (67)

for y ∈ Rn and i = 1, . . . ,n.

4.2 a dynamical flow network model with finite capacity

We consider dynamical flow networks consisting of finitely many cells i = 1, 2, . . . ,n,
exchanging an indistinguishable commodity both among themselves and with the
external environment as described below. (See also Figure 11)

Let xi(t) be the quantity of commodity contained in cell i = 1, 2, . . . ,n at time
t ≥ 0 and let wi > 0 be its capacity. The state of the system is described by
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Figure 11: Illustration of a dynamical flow network with four cells.

the vector x(t) = (xi(t))1≤i≤n and evolves in continuous time according to the
following dynamical system

ẋ = f(x) , (68)

where f(x) = (fi(x))1≤i≤n is the vector of instantaneous net flows (inflows minus
outflows) in the cells that will be assumed to satisfy the constraints

− xi ≤ fi(x) ≤ wi − xi , i = 0, . . . ,n , (69)

throughout the evolution of the system. Notice that the leftmost inequality in
(69) states that the outflow from cell i can never exceed the current inflow plus
the total quantity of commodity in the cell, in particular implying the physically
meaningful fact that the net flow fi(x) is non-negative when the cell is empty
(i.e., when xi = 0) so that xi(t) can never become negative. On the other hand,
the rightmost inequality in (69) guarantees that the sum of the current total mass
and the inflow in a cell i and can never exceed the difference between its capacity
wi and the current outflow, so that in particular, when the mass x(t) = wi has
reached the capacity, the net flow fi(x) is non-positive, thus implying that the
total mass will never exceed the capacity wi if started below that. The complete
lattice Lw0 is invariant for any dynamical flow network (68) satisfying (69).

Now, let each cell i possibly receive a constant exogenous inflow λi ≥ 0 from
outside the network and let a constant flow µi ≥ 0 possibly be drained directly
from cell i towards the external environment, and let ci = λi−µi be the exogenous
net demand on cell i. Also, assume that constant fraction Rij ≥ 0 of the quantity
of commodity xi flows directly towards another cell j 6= i in the network (fixed
routing), while the remaining part (1−

∑
j Rij)xi leaves the network directly. No-

tice that the routing matrix R = (Rij) ∈ Rn×n is necessarily sub-stochastic, i.e.,
with non-negative entries and such that its rows all have sum less than or equal
to 1.
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Conservation of mass and the constraint (69) imply that the net flow in each cell
i = 1, . . . ,n is given by

fi(x) = Swi−xi−xi

(
λi − µi +

∑
j Rjixj − xi

)
= Swi0

(∑
j Rjixj + ci

)
− xi .

(70)

We may then rewrite the dynamical flow network (68)–(70) compactly as

ẋ = Sw0

(
R>x+ c

)
− x , (71)

where w ∈ Rn is the vector of the cells’ capacities. Observe that the function f(x)
as defined in (70) is Lipschitz continuous in Rn, so that existence and uniqueness
of a solution to the dynamical flow network (71) is ensured for every initial state
x(0) ∈ Lw0 .

Observe that in the dynamical network flow (71) it is understood that when the
difference between the total flow λi +

∑
j Rjixj directed towards a cell and the

outflow µi+ xi from it exceeds the capacity wi, then the exceeding part of it leaks
out of the system. Moreover, the dynamical network flow (71) also assumes that,
when the difference between the total exogenous demand µi on a cell i and the
total inflow λi+

∑
j Rjixj exceeds the cell’s capacity wi, then the outflow towards

the external environment is reduced by an amount equal to the exceeding part of
this difference.

In the following sections, we state the main results of this Chapter. These are
concerned on the one hand with the geometry and global asymptotic stability of
the dynamical flow network (71) and on the other hand on the dependence (in par-
ticular, continuity and the lack thereof) of the equilibria of (71) on the exogenous
demand vector c ∈ Rn.

4.3 geometry and stability of equilibria

In this Section we present important results about the geometry and stability of
the equilibria. As far as the geometry is concerned, we notice that the equilibria of
(71) are exactly the solutions of the saturated system (16) that we have thoroughly
studied in Chapter 3 and this allows us to exploit several results already proved
in that Chapter.

The dynamical nature of this model, however, imposes also questions about the
stability and convergence towards such equilibria and in order to answer this, we
will first present some technical results concerning properties of the system (71)
that we will need to prove the main statement. Crucially, the routing the matrix R
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considered in this Chapter is sub-stochastic, in contrast with the more general fam-
ily of non-negative matrices considered in Chapter 3. This additional constraint
will allow us to prove the monotonicity and non-expansiveness properties of the
system (71) that are key to prove the stability results.

To improve the readability of this section, some technical proofs of the results
presented here will be detailed in Appendix B.

We start with the following technical results that exploit monotonicity and, in
part, results derived in Chapter 3.

Lemma 4.3.1 The dynamical system (71) is monotone and non-expansive in l1-distance
on Lw0 .

Lemma 4.3.2 The dynamical system (71) always admits a maximal equilibrium x ∈ Lw0
and a minimal equilibrium x ∈ Lw0 . Moreover, the sets

Xα =

{
x ∈ Lxx :

∑
i

xi = α
∑
i

xi + (1− α)
∑
i

xi

}
(72)

for 0 ≤ α ≤ 1 are all invariant for (71) and, for every initial condition x(0) ∈ Lw0 , the
solution of (71) is such that x(t) t→+∞−→ Lxx.

We will also make use of the following result:

Lemma 4.3.3 Let x∗ be an equilibrium of the dynamical flow network (71) belonging to
the interior of the lattice Lw0 . Then, there exists an ε > 0 such that, every solution of (71)
with initial condition x(0) ∈ Lw0 such that ‖x(0)− x∗‖ < ε, coincides with the solution
of the linear dynamics

ẋ = (R> − I)x+ c . (73)

We are now ready to present the main results assessing the geometry and sta-
bility of the equilibria.

Theorem 4.3.4 Let w ∈ Rn be a positive vector and R ∈ Rn×n a sub-stochastic matrix.
Then,

(i) if R is sub-stochastic and out-connected, then, for every exogenous demand vector c ∈ Rn

the dynamical flow network (71) admits a globally asymptotically stable equilibrium x∗ ∈
Lw0 .

On the other hand, if R is stochastic and irreducible, then
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(ii) for every exogenous demand vector c ∈ Rn the set of equilibria X(c) of the dynamical flow
network (71) is a nonempty line segment joining two points x ≤ x on the boundary of the
lattice Lw0 ;

(iii) for every initial state x(0) ∈ Lw0 , the solution of (71) converges to the equilibrium set
X(c) as t grows large;

(iv) the equilibrium set X(c) has positive length if and only if

min
i

{
νi
πi

}
+min

i

{
wi − νi
πi

}
> 0 (74)

where ν is any solution of ν = R>ν + c.

Proof

(i) It immediately follows as a particular case of Theorem 3.4.3 that, when R is sub-
stochastic out-connected, x = x = x∗ is the unique equilibrium. From Lemma
4.3.2 such an equilibrium is globally asymptotically stable.

(ii) It immediately follows from Theorem 3.4.3 that the equilibria of (71) form a line
segment joining two points on the boundary of Lw0 .

(iii) If x = x, then the global convergence follows from Lemma 4.3.2. Hence, we need
to prove convergence in the case the system admits infinitely many equilibria.
Notice that, for every 0 ≤ α ≤ 1, the set Xα defined in (72) intersects the line
segment X(c) in a single equilibrium point x∗(α) = αx+ (1− α)x. Moreover, as
discussed in the proof of point (ii) above, for every 0 < α < 1, such equilibrium
x∗(α) belongs to the interior of the lattice Lw0 , so that Lemma 4.3.3 implies that
the dynamical flow network (71) reduces to the linear dynamical system (73) in
a sufficiently small neighborhood of it. Now observe that all solutions of (73)
with initial condition x(0) ∈ Xα converge to x∗α as t grows large. It then follows
that, for every 0 ≤ α ≤ 1, there exists some ε > 0 such that for every solution
x(t) of the dynamical flow network with initial condition x(0) ∈ Xα such that
‖x(0)− x∗(α)‖ < ε converges to x∗(α) as t grows large.
Now, let φt(x◦) be the solution of (71) started at x(0) = x◦. By Theorem 4.5 in
[38] our last finding implies that, for every 0 ≤ α ≤ 1 there exists a KL function
β(·, ·) such that

∥∥φt(x)− x∗(α)∥∥ ≤ β (x− x∗(α), t) for every x ∈ Xα such that
‖x− x∗(α)‖1 ≤ ε. To prove global convergence to the set X̊(c) we need to show
that for any x◦ ∈ Xα such that ‖x◦ − x∗‖1 > ε, there exists a finite time T ≥ 0 such
that

∥∥φT (x◦)− x∗(α)
∥∥
1
≤ ε. For sake of notation, let us put x∗ = x∗(α).
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Now let x̂ = x∗ + ε
‖x◦−x∗‖ (x

◦ − x∗) , for which it is easily seen that ‖x̂− x∗‖1 = ε,

and

‖x◦ − x∗‖1 = ‖x
◦ − x̂‖1 + ‖x̂− x

∗‖1
= ‖x◦ − x̂‖1 + ε

and consider the trajectories of the system starting from x◦ and x̂. By the l1-non
expansive property ensured by Lemma 4.3.1 we have
d
dt

∥∥φt (x◦)− φt(x̂)∥∥
1
≤ 0, namely∥∥φt (x◦)− φt(x̂)∥∥

1
≤ ‖x◦ − x̂‖1 .

By the triangle inequality,∥∥φt (x◦)− x∗∥∥
1
≤
∥∥φt (x◦)− φt(x̂)∥∥

1

+
∥∥φt(x̂)− x∗∥∥

1

= ‖x◦ − x̂‖1 +
∥∥φt(x̂)− x∗∥∥

1

= ‖x◦ − x∗‖1 − ε
+
∥∥φt(x̂)− x∗∥∥

1

Due to the properties of the KL functions, there exists T ε
2
≥ 0 such that β(x−

y, t) ≤ ε
2 for all y such that ‖y− x∗‖1 ≤ ε and for all t ≥ T ε

2
. Thus, we have∥∥φt (x◦)− x∗∥∥

1
≤ ‖x◦ − x∗‖1 − ε
+
∥∥φt(x̃)− x∗∥∥

1

≤ ‖x◦ − x∗‖1 −
ε

2

(75)

for all t ≥ T ε
2
. If

∥∥∥φT ε2 (x◦)− x∗(α)∥∥∥
1
≤ ε the proof is complete with T− = T ε

2
.

Otherwise, the same argument can be reiterated. Since each step the `1 distance
between φt(x) and x∗ decreases by at least ε

2 > 0, in no more than
⌈
2‖x◦−x∗‖1

ε

⌉
steps, i.e., for T ≤

⌈
2‖x◦−x∗‖1

ε

⌉
T ε

2
, it holds ‖φT (x◦)− x∗‖1 ≤ ε.

(iv) It follows immediately from Theorem 3.4.3.

4.4 continuity and phase transitions

Theorem 4.3.4 characterizes the set of equilibria X(c) and it is particularly relevant,
in a given network, to study the behavior of such set with respect to possible
variations of the exogenous net flow vector c. Indeed, this exogenous flow might
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be subject to shocks and variations that might affect the whole flow on the network.
Thus, the resilience of the system with respect to shocks is in the end determined
by the way solutions depend on the parameter vector c. Here we exploit what
we proved in Chapter 3 showing that there exists a set of critical vector c such
that the equilibria of (71) undergo a jump discontinuity, thus determining a phase
transition in the asymptotic behavior of the system, and we will describe this
critical set.

We follow the notation introduced in Chapter 3 where

U = {c ∈ Rn : |X(c)| = 1} , M = Rn \U , (76)

are the subsets of exogenous flow vectors for which there is a unique equilibrium
and, respectively, there are multiple equilibria. Moreover, we denote with x(c) and
x(c) the smallest and largest equilibria for a given vector c. For exogenous flow
vectors c ∈ U, we shall also use the notation

x∗(c) = x(c) = x(c)

for the unique equilibrium.
We can now state the following result.

Theorem 4.4.1 Let w ∈ Rn
+ be a non-negative vector. Let U and M be defined as in (76).

Then,

(i) if R is sub-stochastic and out-connected, then, for every exogenous demand vector c ∈ Rn

the map c 7→ x∗(c) is continuous.

On the other hand, if R is stochastic and irreducible, then

(ii) M is linear sub-manifold of co-dimension 1;

(iii) the map c 7→ x∗(c) is continuous on the set U;

(iv) for every c∗ ∈M,

lim inf
c∈U
c→c∗

x∗(c) = x(c∗) , lim sup
c∈U
c→c∗

x∗(c) = x̄(c∗) .

Proof Notice that (i), (ii), (iii) and (iv) all follow as a particular case of Theorem
3.5.1. In particular, since we are considering a matrix R stochastic and irreducible,
the number of basic classes of R is m = 1.

Theorem 4.4.1, and in particular the condition (iv), states that the equilibria of
(71) undergo a jump discontinuity when the vector c crosses the set M for which
the uniqueness condition for equilibria fails to hold. This in turn implies that even
a slight change in the exogenous flow may trigger a phase transition in the system
and a huge impact on the quantity of commodities exchanged at equilibrium in
the network. We show this phenomenon in the following example.
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Example:
Let us consider a flow model with an irreducible routing matrix R, in particular,
we consider (71) with:

R =

 0 0.75 0.25

0 0 1

0.3 0.7 0

 , w =

54
6

 , c =

 0

−1
1


The corresponding flow network is shown in Fig. 12.

1

3

2

0.25 1

0.70.3

0.75

Input/output

−1

1

Figure 12: Flow network with three cells.

Since 1>c = 0 and mini

{
(Hc)i
πi

}
+mini

{
wi−(Hc)i

πi

}
≈ 9.62 > 0 then (71) ad-

mits multiple equilibria because of Theorem 4.3.4(iv). Indeed one can compute
x(c) ≈ [1.62, 4, 5.41]> and x(c) ≈ [0.32, 0, 1.08]>. We highlight the big jump that
occurs for this particular vector c; notice how in the largest solution x, cell 2 can
deliver its total outflow capacity 4 while in the smallest solution x it outputs 0.
A slight change of the exogenous flow around c could then have a huge impact
on the network. In Fig. 13 we show some trajectories (in red) for different initial
conditions in the phase space; we also plot the two lattices Lw0 and Lxx (in green
and light blue respectively); finally, the segment of equilibria X is plot in orange.
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Figure 13: Trajectories in the phase space in case of multiple equilibria.
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We can notice how all trajectories (red curves) converge to the set of equilibria
(orange segment).

Let us now change slightly the vector c by setting: c = [α3 ,−1,
2α
3 ]> with α ∈

[0, 9]. Notice that we have multiple equilibria when α = 1 =⇒ c∗ = [13 ,−1,
2
3 ]
>

as in that case one can check that condition of Theorem 4.3.4(iv) holds. In Figure
14 we show the set of equilibria X(c) in the phase space as c varies as a function
of α.

x2
x3

0

−1
−2

10−1

Lw0

x

Lxx
x

2 30
1

−1

1

x1
w

0

α = 1

0 ≤ α < 1

1 < α ≤ 9

Figure 14: Set of equilibria in the phase space as α varies.

Notice that x∗(c) is a piece-wise linear function. We can see that for 0 ≤ α < 1

the equilibria (red segment) start from 0, they are unique and located on ∂Lw0 ,
then when α = 1 (and c = c∗) we have multiple equilibria (orange segment)
and finally when α > 1 the unique equilibria (gray segment) are located on ∂Lw0
until they eventually reach w, which means that all cells output their maximal
flow.

We appreciate a phase transition of the dynamical system as the parameter
α crosses the value α = 1. In this case in fact, the equilibria undergo a jump
discontinuity going from x(c∗) to x(c∗)

4.5 conclusions

In this Chapter we have introduced a nonlinear dynamical system that models a
flow dynamic between cells with finite flow capacity. We have completely charac-
terized the set of equilibria of the system and proved the global convergence of
the solutions toward this set. Moreover, we have shown how the model exhibits
critical phase transitions as the exogenous flow approaches a set of critical values.
Future work includes a more in-depth analysis of the discontinuities and their
relationship to the network structure and extending the dynamical flow model to
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allow for non-linearities in the dependence of the outflow from a cell on the mass
of commodity in it.



5
C O N C L U S I O N S A N D F U T U R E R E S E A R C H

5.1 conclusion

In this dissertation, we have undertaken a fundamental study of a saturated net-
work model that has found several applications in literature. Specifically, in Chap-
ter 3 we have considered a generalization of a saturated model first introduced
with the key work of Eisenberg and Noe [25] in the context of financial networks.
We have used novel approaches, leveraging concepts in the theory of supermod-
ular games and non-expansive networks to obtain key results assessing existence
and uniqueness of network equilibria that generalize previous results present in
the literature. Within this framework, we have also given new insights on how
the network structure can affect the propagation of shocks and on the important
concept of systemic risk that these models try to capture. More in details, we have
shown the equilibria can experience a jump discontinuity around certain critical
shocks; this has profound implications for systemic risk, in particular in the con-
text of financial networks, as arbitrarily small variants of the shock around such
critical thresholds can trigger default cascades by causing multiple nodes to sud-
denly default. Moreover, this fundamental analysis of the dependence between the
network equilibria allowed us to quantify the sensitivity of Nash equilibria with
respect to exogenous inputs in a certain family of constrained quadratic games.

Our main contributions are the followings.

• We have completely characterized the network equilibria by introducing a
class of non-expansive networks and proved that all such equilibria satisfy
a fundamental invariant property with respect to a specific partition of the
node set.

• We have characterized the structure of the set of network equilibria with
respect to the structure of the underlying network itself. We have shown
how to construct all equilibria given one of them and proved a Theorem that
gives necessary and sufficient conditions for the uniqueness of the network
equilibria in a very general case where we only assume that the spectral
radius of the weighted adjacency matrix of the underlying network is less
or equal than 1. Not only this results generalizes all previous known results
but the condition for uniqueness can be easily checked a priori without the
need for computing any network equilibrium.
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• We have proved the existence of critical shocks for which the network equi-
libria exhibit a jump discontinuity. Such thresholds appear when the unique-
ness conditions for network equilibria fail to hold true. The discontinuity set
is described analytically as well as the largest jump that may occur in the
network.

• We have provided a sensitivity analysis of the equilibria of certain con-
strained quadratic games with respect to the exogenous input. Moreover,
we have quantified the effect of the jump discontinuity in the context of fi-
nancial networks, highlighting the potential dramatic implications that such
phenomenon can have in terms of systemic risk.

In Chapter 4 we have considered in details a relevant application of the satu-
rated model studied in the previous Chapter. We have studied a dynamical flow
model on networks with capacity constraints. In particular, the model represents
a number of cells with finite capacity exchanging a common commodity around
the network and with the external environment. Implementing these capacity con-
straints on the amount of commodities that a certain cell can contain is extremely
relevant in a number of applications such as in the context of infrastructure and
transportation networks. We have studied this model leveraging a number of re-
sults from the theory of monotone system and contraction theory while also ex-
ploiting the results derived in the previous Chapter to study the structure of the
equilibria and their asymptotic stability. After completely characterizing the set
of equilibria of the dynamical model, we have proved the global convergence of
all solutions toward this set. Moreover, we have shown the existence of critical
thresholds for the flow coming from the external environment that triggers phase
transitions in the system by generating jump discontinuities in the set of equilib-
ria.

Our main contributions are the followings.

• We have introduced a novel dynamical continuous-time flow model with fi-
nite capacities that is described by means of a differential equation involving
saturation functions.

• We have proved that the system is monotone a non-expansive, this was used
to prove the global convergence of the solutions toward the equilibria. Cru-
cially, the fact that in this model the routing matrix is necessarily a sub-
stochastic matrix was key to prove the monotonicity and non-expansiveness
properties that we needed to establish the convergence toward the equilibria.
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• Exploiting the theory developed in the previous Chapter, we proved the
existence of critical thresholds for the flow coming from the external envi-
ronment that triggers phase transitions in the system.

To sum up, in this dissertation we have provided results that completely char-
acterize the structure and the stability properties of the equilibria of a certain
saturated network model that arises in several applications and attracted a grow-
ing attention in literature over the past few years. Our results about uniqueness
and continuity of the network equilibria shed new light also on how this model
can capture the systemic effect of exogenous shocks that hit certain nodes of the
network.

5.2 current and future research

There are several interesting research directions to explore for future develop-
ments. One of the most interesting one that we are currently working on is the
studying of the saturated network model in random networks with prescribed
degree distributions.

A growing body of literature has started to study financial contagion models
on random graphs. In [7] a framework for testing the possibility of large cas-
cades in financial networks is studied on inhomogeneous random graphs. The
proposed model is however simpler than the saturated one and it considers differ-
ent probabilities of emergence of "contagious links" conditional on a shock, where
a contagious link triggers the default of a bank following the default of its coun-
terparty. The authors give bounds on the size of the cascade through contagious
links and check under which conditions such cascades are "small". In [24] a thresh-
old model is studied on a random directed network and it is shown that when
the network has a degree distribution without second moment, a small number
of initially defaulted banks can trigger a large default cascade. In [8] a model of
financial contagion is studied on large random financial networks with prescribed
degree distributions and authors provide analytical expressions for the asymptotic
fraction of defaults, in terms of network characteristics.

Despite these results, an analytic study of saturation models such as the Eisen-
berg and Noe and its generalizations on random structures is still a largely un-
charted territory of research. We are currently studying the saturated equilibrium
model on a a particular family of infinite random acyclic graphs that have a tree-
like structures with prescribed in and out degree distributions. As mentioned ear-
lier, this is particularly relevant as many real-world networks proved to feature lo-
cal tree-like structures. Shifting the setting towards random networks instead that
deterministic ones poses several challenges from a mathematical point of view. In
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fact the equation describing the model defines a stochastic process that, in general,
is non Markovian. Our focus is currently devoted to studying the existence and
uniqueness of the invariant distribution of such a process.

We have already obtained promising preliminary results in this area. We were
able to prove the existence and uniqueness of the invariant distribution on certain
tree-like structures under some conditions on the in and out degree distribution
of nodes. Moreover, we have proved the uniqueness of the invariant distribution
for the particular case of an infinite line graph leveraging the theory of Markov
chains on general state spaces and we are currently working on refining these
results to address more general cases.

Another interesting line of research would be to develop novel notions of node
centrality measures that could somehow quantify the importance of each node
in a network in terms of its ability to spread shocks across the network and to
"infect" other nodes, possibly triggering cascade effects. This is extremely relevant
for all the institutions that play a role in the financial system, especially banks.
Current frameworks on bank capital adequacy, stress testing, and market liquid-
ity risk, such as the Basel III voluntary agreement, make use of risk measures that
still do not properly take into account the underlying network structure linking
the financial institutions, while common measures of importance like eigenvector
centrality proved to be inadequate. While some numerical stress testing of Eisen-
berg and Noe-like models have been proposed to highlight the most fragile nodes,
this approach does not allow to fully understand the role of the network in the
contagion process. Promising results in this direction have been obtained in [10]
where a framework to monitor systemic risk is proposed allowing to estimate and
disentangle not only first-round effects (i.e., direct defaults) and second-round ef-
fects (i.e. distress induced in the inter-bank network), but also third-round effects
induced by possible fire sales. In [28], a centrality measure known as node depth is
introduced (notably, the node depth is the dual to the concept of eigenvector cen-
trality in the networks literature). The authors show that the node depth measures
the amplification of losses due to interconnections among nodes in the default set
but this concept breaks down in presence of deficit nodes and it cannot be used
in the more general model that we have studied in this thesis. The studying of
measures of vulnerability and contagion is still lacking rigorous analytical results
that can help to clarify the role of the topology and we would like to develop this
theory by also leveraging the results that we have obtained regarding the existence
of critical shocks. Developments in this topic could have important implications
also in designing optimal aid policies to improve the robustness of the financial
system.
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Finally, encouraged by our results presented in this dissertation, we are also
planning to extend them to more general versions of the saturated network model.
The model can be enriched in a number of different ways, especially in the context
of financial networks, for example by considering fire sales, bankruptcy costs and
allow for asynchronous clearing processes that are more suitable to describe real
financial systems.



A
A P P E N D I X A : T E C H N I C A L R E S U LT S O N N O N - N E G AT I V E
M AT R I C E S

Proof of Proposition 2.2.2 We start with the following result.

Lemma A.0.1 Let P in Rn×n
+ be a non-negative square matrix such that

• there exists a non-negative vector v 6= 0 such that Pv ≤ v;

• for every i = 1, . . . ,n, there exists a path in GP connecting i to some j such that (Pv)j <
vj .

Then, ρ(P ) < 1.

Proof Notice that, for every h ≥ 0, P hv ≤ v, so that, for t ≥ h, non-negativity
of P t−h implies that (P tv) = P t−hP hv ≤ P hv. On the other hand, existence of a
length-li path from i to j in GP is equivalent to that (P li)ij > 0. Therefore, if there
exists a length-li path in GP from i to some j such that (Pv)j < vj , then, for every
t > li,

(P tv)i ≤ (P li+1v)i =
n∑
k=1

(P li)ik(Pv)k =
n∑
k=1

(P li)ikvk < (P liv)i ≤ vi .

Therefore, with t = 1+maxi li, we have (P tv)i < xi for every i. Since xi > 0 for
every i, we can find ε > 0 such that P tv ≤ (1− ε)v. This implies that limP tm = 0

as m grows large and thus ρ(P t) < 1. This yields ρ(P ) < 1.

We can now proceed to the proof of Proposition 2.2.2.
First, we prove existence of a positive vector v satisfying (5) for every non-

expansive network. We proceed by induction on the number s of classes of P .
If s = 1, i.e., P if is irreducible, the result follows from Proposition 2.2.1 (iii). Now,
assume that the result holds true for s− 1 and let us prove it for s. Consider the
block structure (4) and notice that by the inductive hypothesis we can find vectors
x(l) of dimension |Vl| for l = 2, . . . , s with all positive entries such that

s∑
h=l

P (lh)v(h) ≤ v(l) .
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We now show that we can find α > 0 and x(1) of dimension |V1| with all positive
entries, such that

P (11)v(1) + α
s∑

j=2

P (1j)v(j) ≤ v(1) . (77)

Indeed, if ρ(P (11)) < 1 this simply follows from a continuity argument. Instead,
if ρ(P (11)) = 1, then since P (11) is irreducible, it admits a positive right dominant
eigenvalue v(1) = P (11)v(1) by Proposition 2.2.1 (iii). On the other hand, since V1

is final, we have that P (1h) = 0 for every h = 1, . . . , s, so that (77) is satisfied
as an equality for all possible values of α > 0. This implies that the vector v =
(v(1), . . . , v(s−1), v(s)) has all positive entries and satisfies Pv ≤ v.

Finally, we prove that, existence of a positive vector v satisfying (5) implies that
the network is non-expansive. From (5), using the fact that all entries of v are
strictly positive, we deduce that P t is a bounded sequence, so that ρ(P ) ≤ 1. Now,
assume that Vl is a non final class such that ρ(P (ll)) = 1. Indicating as usual with
v(l) the restriction of v to Vl, we obtain the relation

P (ll)v(l) +
s∑

h=l+1

P (lh)v(h) ≤ v(l)

from which we deduce that P (ll)v(l) � v(l). Since P (ll) is irreducible, we can apply
Lemma A.0.1 and conclude that ρ(P (ll)) < 1.



B
A P P E N D I X B : T E C H N I C A L R E S U LT S O N M O N O T O N E
S Y S T E M S

Proof of Lemma 4.3.1 We first prove that Lw0 is invariant. It is enough to show
that when a component xi reaches the boundary of Lw0 , i.e. xi = wi or xi = 0,
then the derivative is non positive or non negative respectively. For xi = wi, since
obviously Swi0

(∑
j Rjixj + ci

)
≤ wi we have that:

ẋi = Swi0

∑
j

Rjixj + ci

−wi ≤ 0 (78)

When xi = 0, since Swi0

(∑
j Rjixj + ci

)
≥ 0 we have that

ẋi = Swi0

∑
j

Rjixj + ci

 ≥ 0 (79)

and this completes the proof.
We now prove that (71) is a monotone system. Set fi(x) = Swi0

(∑
j Rjixj + ci

)
−

xi. It is enough to show that
∂fi
∂xk

≥ 0, ∀ k 6= i almost everywhere (i.e. excluding

0-measure set of points where fi is not differentiable).
It is immediate to see that:

∂fi
∂xk

=


0 if

∑
j Rjixj + ci < 0

rki if 0 <
∑

j Rjixj + ci < wi

0 if
∑

j Rjixj + ci > wi

(80)

Since (80) is non negative, therefore Theorem 1.2 in [34] implies that (71) is a
monotone system.

Finally, we show that (71) is non expansive in l1 distance on Lw0 . By monotonicity
and using the fact that ∑

i

∂fi
∂xk
≤
∑
i

rki − 1 ≤ 0 (81)

the result follows by using Lemma 5 in [41].
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Proof of Lemma 4.3.2 From monotonicity and the fact that Lw0 is invariant, the
two Cauchy problems{

ẋ = Sw0
(
R>x+ c

)
− x

x0 = 0

{
ẋ = Sw0

(
R>x+ c

)
− x

x0 = w
(82)

admit unique solutions that converge to a lower equilibrium x and largest equilib-
rium x̄ respectively, i.e. x ≤ x̄;

Now, let y =
∑

i xi and y =
∑

i xi. Consider an initial state x(0) ∈ Lxx for
0 ≤ α ≤ 1. Since the system is non-expansive in l1, both ‖x(t)−x‖1 and ‖x(t)−x‖1
cannot increase in time, which implies that

∑
i xi(t) remains constant. It follows

that the sets Xα = {x ∈ Lxx :
∑

i xi = αy + (1− α)y} are all invariant.
The last claims of the Lemma follow directly from monotonicity. Indeed, for any

x◦ ∈ Lw0 , let φt(x◦) be the solution of (71) at time t ≥ 0. Since φt(0) t→+∞−→ x and
φt(w)

t→+∞−→ x, then it must be be φt(x◦)
t→+∞−→ Lxx ∀ x◦ ∈ Lw0 and in particular,

∀ x◦ ∈ Lxx.

Proof of Lemma 4.3.3 Observe that an equilibrium x∗ ∈ the interior of Lw0 is
such that Sw0 (R

>x∗ + c) = x∗ belongs to the interior of Lw0 which in turn implies
that

f(x∗) = Sw0 (R
>x∗ + c)− x∗ = (R> − I)x∗ + c .

Since the map f(x) is continuous, there necessarily exists an ε > 0 such that
for all ‖x− x∗‖ < ε we have that f(x) = (R> − I)x + c. Since R is stochastic,
it has spectral radius in the unitary disk centered in zero so that R> − I has all
eigenvalues with non-positive real part. Hence x∗ is locally stable (both for the
linear dynamical system (73) and the nonlinear dynamical flow network (71), as
they locally coincide), so that we can always find a number δ ≤ ε such that if
‖x(0)− x∗‖ < δ then ‖x(t)− x∗‖ < ε for all t ≥ 0. This ensures that the trajectories
of the system remain in the region where the dynamics is linear and hence the
claim follows.
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